Skip to main content
Log in

Aerobic carbon monoxide oxidation in the course of growth of a hyperthermophilic archaeon, Sulfolobus sp. ETSY

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

An aerobic hyperthermophilic CO-oxidizing archaeon, Sulfolobus sp. strain ETSY, was isolated and characterized. Presently, it is the only known representative of both hyperthermophiles and Archaea that is capable of aerobic oxidation of CO, a gas of global importance for atmospheric chemistry and of local importance as one of the substrates for the microbial communities of hydrothermal vents. In the genome of Sulfolobus sp. ETSY we found genetic determinants of aerobic CO oxidation: a coxFMSLDE gene cluster and two separately located coxG genes. We also found such gene clusters in the genomes of certain strains of Sulfolobus islandicus and Sulfolobus solfataricus. On the phylogenetic tree of large subunits of aerobic CO-dehydrogenases (CoxLs), these proteins of Sulfolobus representatives formed a compact cluster within one of the branches formed by bacterial form I CoxLs. Thus we argue that the ability to oxidize CO aerobically was acquired by Sulfolobus ancestor from Bacteria relatively late in the evolution, presumably after the formation of the atmosphere with a high oxygen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brady, A.L., Sharp, C.E., Grasby, S.E., and Dunfield, P.F., Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing, Front. Microbiol., 2015, vol. 6, 897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L., BLAST+: architecture and applications, BMC Bioinformatics, 2009, vol. 10, 421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann, S., Ferner, M., Jeffke, T., Henne, A., Gottschalk, G., and Meyer, O., Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2, Gene, 2003, vol. 322, pp. 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Huber, H., Prangishvili, D., Sulfolobales, in Prokaryotes, 3d ed., Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., and Stackebrandt, E., Eds., Syngapure: Springer, 2006, vol. 3, pp. 23–51

    Chapter  Google Scholar 

  • Huson, D.H. and Scornavacca, C., Dendroscope 3–an interactive viewer for rooted phylogenetic trees and networks, Syst. Biol., 2012, vol. 61, pp. 1061–1067.

    Article  PubMed  Google Scholar 

  • IPCC Climate Change 2001, The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2001.

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, pp. 3059–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. and Drummond, A., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, vol. 28, pp. 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kevbrin, V.V. and Zavarzin, G.A., The effect of sulfur compounds on the growth of the halophilic homoacetic bacterium Acetohalobium arabaticum, Mikrobiologiya, 1992, vol. 61, pp. 812–817 (in Russian).

    CAS  Google Scholar 

  • King, C.E., Diversity and activity of aerobic thermophilic carbon monoxide oxidizing Bacteria on Kilauea volcano, Hawaii, Doctoral Dissertation, Louisiana State University. 2013.

    Google Scholar 

  • King, C.E. and King, G.M., Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria, Int. J. Syst. Evol. Microbiol., 2014a, vol. 64, pp. 1244–1251.

    Article  CAS  PubMed  Google Scholar 

  • King, C.E. and King, G.M., Thermomicrobium carboxidum sp. nov., and Thermorudis peleae gen. nov., sp. nov., carbon monoxide-oxidizing bacteria isolated from geothermally heated biofilms, Int. J. Syst. Evol. Microbiol., 2014b, vol. 64, pp. 2586–2592.

    Article  CAS  PubMed  Google Scholar 

  • King, G.M. and Weber, C.F., Distribution, diversity and ecology of aerobic CO-oxidizing bacteria, Nat. Microbiol. Rev., 2007, vol. 5, pp. 107–118.

    Article  CAS  Google Scholar 

  • Kochetkova, T.V., Rusanov, I.I., Pimenov, N.V., Kolganova, T.V., Lebedinsky, A.V., Bonch-Osmolovskaya, E.A., and Sokolova, T.G., Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs, Extremophiles, 2011, vol. 15, pp. 319–325.

    Article  CAS  PubMed  Google Scholar 

  • Krüger, B. and Meyer, O., Thermophilic bacilli growing with carbon monoxide, Arch. Microbiol., 1984, vol. 139, pp. 402–408.

    Article  Google Scholar 

  • Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., Huntemann, M., Anderson, I., Mavromatis, K., Ivanova, N.N., and Kyrpides, N.C., IMG: the Integrated Microbial Genomes database and comparative analysis system, Nucleic Acids Res., 2012, vol. 40 (Database issue), pp. D115–D122.

  • Marmur, J., A procedure for the isolation of deoxyribonucleic acid from microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  • Martínez-Alonso, S., Deeter, M.N., Worden, H.M., Clerbaux, C., Mao, D., and Gille, J. C. First satellite identification of volcanic carbon monoxide, Geophys. Res. Lett., 2012, vol. 39, no. 21, L21809.

    Article  Google Scholar 

  • Meyer, O., Frunzke, K., Gadkari, D., Jacobitz, S., Hugendieck, I., and Kraut, M., Utilization of carbon monoxide by aerobes–recent advances, FEMS. Microbiol. Rev., 1990, vol. 87, pp. 253–260.

    Article  CAS  Google Scholar 

  • Nishimura, H., Nomura, Y., Iwata, E., Sato, N., and Sako, Y., Purification and characterization of carbon monoxide dehydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum pernix, Fish Sci., 2010, vol. 76, pp. 999–1006.

    Article  CAS  Google Scholar 

  • Nozhevnkova, A.N. and Zavarzin, G.A., Taxonomy of COoxidizing Gram-negative bacteria, Izv. Akad. Nauk SSSR, Ser. Biol., 1974, vol. 3, pp. 436–440 (in Russian).

    Google Scholar 

  • Pelzmann, A.M., Mickoleit, F., and Meyer, O., Insights into the posttranslational assembly of the Mo-, S-and Cucontaining cluster in the active site of CO dehydrogenase of Oligotropha carboxidovorans, J. Biol. Inorg. Chem., 2014, vol. 19, pp. 1399–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petron, G., Granier, C., Khattatov, B., Yudin, V., Lamarque, J.-F., Emmons, L., Gille, J., and Edwards, D.P., Monthly CO surface sources inventory based on the 2000–2001 MOPITT satellite data, Geophys. Res. Lett., 2004, vol. 31, L21107.

    Article  Google Scholar 

  • Price, M.N., Dehal, P.S., and Arkin, A.P., FastTree 2–approximately maximum-likelihood trees for large alignments, PLoS One, 2010, vol. 5, e9490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimodaira, H. and Hasegawa, M., Multiple comparisons of log-likelihoods with applications to phylogenetic inference, Mol. Biol. Evol., 1999, vol. 16, pp. 1114–1116.

    Article  CAS  Google Scholar 

  • Slepova, T.V., Hydrogenogenic carboxydotrophic prokaryotes in hot springs of Kamchatka, Cand. Sci. (Biol.) Dissertation, Moscow: Winogradsky Institute of Microbiology, 2008 (in Russian).

    Google Scholar 

  • Sokolova, T.G., Henstra, A.M., Sipma, J., Parshina, S.N., Stams, A.J., and Lebedinsky, A.V., Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes, FEMS Microbiol. Ecol., 2009, vol. 68, pp. 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova, T. and Lebedinsky, A., CO-oxidizing anaerobic thermophilic prokaryotes, in Thermophilic Microbes in Environmental and Industrial Biotechnology. Biotechnology of thermophiles, 2nd ed., Satyanarayana, T., Littlechild, J., and Kawarabayasi, Y., Eds., Dordrecht–Heidelberg–New York–London: Springer Science + Business Media Dordrecht, 2013, pp. 203–231.

    Chapter  Google Scholar 

  • Volland, S., Rachinger, M., Strittmatter, A., Daniel, R., Gottschalk, G., and Meyer, O., Complete genome sequences of the chemolithoautotrophic Oligotropha carboxidovorans strains OM4 and OM5, J. Bacteriol., 2011, vol. 193, p. 5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.

    CAS  PubMed  Google Scholar 

  • Wu, D., Raymond, J., Wu, M., Chatterji, S., and Ren, Q., Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum, PLoS One, 2009, vol. 4(1), e4207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Zhou, E., Jiang, H., Li, W., Wu, G., Huang, V., Hedlund, B. P., and Dong, H., Distribution and diversity of aerobic carbon monoxide-oxidizing bacteria in geothermal springs of China, the Philippines, and the United States, Geomicrobiol. J., 2015, vol. 32, pp. 903–913.

    Article  CAS  Google Scholar 

  • Yoneda, Y., Kano, S.I., Yoshida, T., Ikeda, E., Fukuyama, Y., Omae, K., Kimura-Sakai, S., Daifuku, T., Watanabe, T., and Sako, Y., Detection of anaerobic carbon monoxide-oxidizing thermophiles in hydrothermal environments, FEMS Microbiol. Ecol., 2015, vol. 91(9), fiv093.

    Article  PubMed  Google Scholar 

  • Zavarzin, G.A., Hydrogen Bacteria and Carboxydobacteria, Moscow: Nauka, 1978 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Sokolova.

Additional information

Original Russian Text © T.G. Sokolova, M.M. Yakimov, N.A. Chernyh, E.Yu. Lun’kova, N.A. Kostrikina, E.A. Taranov, A.V. Lebedinskii, E.A. Bonch-Osmolovskaya, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 5, pp. 527–537.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, T.G., Yakimov, M.M., Chernyh, N.A. et al. Aerobic carbon monoxide oxidation in the course of growth of a hyperthermophilic archaeon, Sulfolobus sp. ETSY. Microbiology 86, 539–548 (2017). https://doi.org/10.1134/S0026261717050174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717050174

Keywords

Navigation