Skip to main content
Log in

Regulation of phase variation in type I pili formation in Escherichia coli: Role of alkylresorcinols, microbial autoregulators

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Formation of virulence-associated type I pili in Escherichia coli should be considered as one of the most efficient models for investigating the mechanisms of regulating the heterogeneity of populations of genetically identical microbial cells. The present work focused on the role of alkylhydroxybenzenes (AHBs), density-dependent intercellular regulators, in controlling phase variations in type I pili formation (fimbriogenesis). The tested AHB homologue was C12-AHB; a genetically constructed strain E. сoli dsp250 containing the fimA-lacZ hybrid operon was used. In this operon, the fimA gene encodes the main subunit of the pili protein, and its expression results in β-galactosidase synthesis; pili-forming cells, therefore, become blue on the medium with the Х-gal substrate. Expression of fimA depends on the inversion of the fimS region that is located upstream of it. If the inversion is on, pili formation takes place, if it is off, no pili are formed. An increase in C12-AHB concentration (within the 5 × 10–5–2 × 10–4 M range) in the exponential-phase culture of strain dsp250 causes a dose-dependent change in the dominant phenotype that is displayed by up to 98–99% of the cells. Cells with this phenotype form colonies with a blue center and white edges. Up to 60% of the cells with this phenotype assume a metastable state and up to 11% and 44% of them transition to the alternative phenotypes of pili-forming and pili-less cells, respectively. The influence of C12-AHB on off-switching, i.e. the formation of the avirulent phenotype, was observed irrespective of the growth conditions of strain dsp250. Addition of glucose to the LB medium (5 or 10 mg/mL) resulted in catabolic repression via regulation by the cAMP-CNR complex and predictably induced pili formation in 49 and 75% of the cells, respectively. Against this background, C12-AHB caused a dose-dependent decrease in the share of pili-forming cells to 33–61% and an increase in the share of pili-less cells to 32–61%. If glucose was added in excess (2.5, 5 or 10 mg/mL) to the diluted LB/2 medium, pili formation was completely repressed, while C12-AHB still induced the off inversion to the pili-less phenotype in up to 30% of the cells. The conclusion can be drawn that C12-AHB is not involved in the pathway of fimbriogenesis regulation via cAMP. Since C12-AHB functions as an extracellular alarmon (activating the rpoS regulon and the SOS response as shown earlier, see Golod et al., 2009), its mechanism of action apparently involves stress signal transduction. It induces the synthesis of global regulators RpoS and H-NS and of intracellular alarmon (p) ppGpp; these factors are responsible for the on → off inversion and the proliferation of pili-less cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aberg, A., Shingler, V., and Balsalobre, C., (p)ppGpp regulates type I fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB, Mol. Microbiol., 2006, vol. 60, pp. 1520–1533.

    Article  PubMed  Google Scholar 

  • Adiciptaningrum, A.M., Blomfield, J.C., and Sander, J.T., Direct observation of type I fimbriae switching, EMBO Reports, 2009, vol. 10, pp. 527–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aertsen, A. and Michiels, C.W., Diversify or die: Generation of diversity in response to stress, Crit. Rev. Microbiol., 2005, vol. 31, pp. 69–78.

    Article  PubMed  Google Scholar 

  • Ahmad, S., Ahmad, M., Khan, S., Ahmad, F., Nawaz, S., and Khan, F.U., An overview on phase variation, mechanisms and roles in bacterial adaptation, J. Pakistan Med. Assoc., 2017, vol. 67, no. 2, pp. 285–291.

    Google Scholar 

  • Bayramoglu, B., Toubiana, D., van Vliet, S., Inglis, R.F., Shnerb, N., and Gillor, O., Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective, Nature Sci. Rep., 2017, vol. 7. id. 42068.

    Article  CAS  Google Scholar 

  • Blomfield, I., Sialic acid and N-acetylglucosamine regulate type I fimbriae synthesis, Microbiol. Spectrum, 2015, vol. 3, no. 3. doi.org/ doi 10.1128/microbiolspec.MBP-0015-2014

    Google Scholar 

  • Blomfield, I., The regulation of pap and type 1 fimbriation in Escherichia coli, Adv. Microbial Physiol., 2001, vol. 45, pp. 1–49.

    Article  CAS  Google Scholar 

  • Brameyer, S., Kresovic, D., Bode, H.B., and Heermann, R., Dialkylresorcinols as bacterial signaling molecules, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 2, pp. 572–577.

    Article  CAS  PubMed  Google Scholar 

  • Davydova, O.K., Deryabin, D.G., Nikiyan, A.N., and El’-Registan, G.I., Mechanisms of interaction between DNA and chemical analogues of microbial anabiosis autoinducers, Microbiology (Moscow), 2005, vol. 74, no. 5, pp. 533–541.

    Article  CAS  Google Scholar 

  • Deitsch, K.W., Lukehart, S.A., and Stringer, J.R., Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens, Nat. Rev. Microbiol., 2009, vol. 7, pp. 493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, no. 4, pp. 380–389.

    Article  CAS  Google Scholar 

  • Golod, N.A., Loiko, N.G., Lobanov, K.V., Mironov, A.S., Voieikova, T.A., Gal’chenko, V.F., Nikolaev, Yu.A., and El’-Registan, G.I., Involvement of alkylhydroxybenzenes, microbial autoregulators, in controlling the expression of stress regulons, Microbiology (Moscow), 2009, vol. 78, no. 6, p. 678–688.

    Article  CAS  Google Scholar 

  • Grant, S.S. and Hung, D.T., Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response, Virulence, 2013, vol. 4, pp. 273–283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Il’inskaia, O.N., Kolpakov, A.I., Zelenikhin, P.V., Kruglova, Z.F., Choǐdash, B., Doroshenko, E.V., Muliukin, A.L., and El’-Registan G.I., The effect of anabiosis autoinducers on the bacterial genome, Microbiology (Moscow), 2002, vol. 71, no. 2. P. 194–199.

    Google Scholar 

  • Khokhlov, A.S., Nizkomolekulyarnye mikrobnye autoregulyatory (Low-Molecular Microbial Autoregulators), Moscow: Nauka, 1988.

    Google Scholar 

  • Krupyanskii, Yu.F., Abdulnasyrov, E.G., Loiko, N.G., Stepanov, A.S., Tereshkina, K.B., and El’-Registan, G.I., Possible mechanisms of the influence of hexylresorcinol on the structure-dynamic and functional properties of lysozyme protein, Russ. J. Phys. Chem. B, 2012, vol. 6, no. 2, pp. 301–314.

    Article  CAS  Google Scholar 

  • Lewis, K., Persister cells, Annu. Rev. Microbiol., 2010, vol. 64, pp. 357–372.

    Article  CAS  PubMed  Google Scholar 

  • Loiko, N.G., Krasnova, M.A., Pichugina, T.V., Grinevich, A.I., Ganina, V.I., Kozlova, A.N., Nikolaev, Y.A., Gal’chenko, V.F., and EL’-Registan, G.I., Changes in the phase variant spectra in the populations of lactic acid bacteria under antibiotic treatment, Microbiology (Moscow), 2014, vol. 83, no. 3, pp. 195–204.

    Article  CAS  Google Scholar 

  • Loiko, N.G., Mulyukin, A.L., Kozlova, A.N., Kaplun, A.P., Sorokin, V.V., Borzenkov, I.A., Nikolaev, Yu.A., Kaprel’yants, A.S., and El’-Registan, G.I., Effect of hexylresorcinol, a chemical analogue of bacterial anabiosis autoinducers on the stability of membrane structures, Appl. Biochem. Microbiol., 2009, vol. 45, no. 2, pp. 162–168.

    Article  CAS  Google Scholar 

  • Magdanova, L.A. and Golyasnaya, N.V., Heterogeneity as an adaptive trait of microbial populations, Microbiology (Moscow), 2013, vol. 82, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  • Maisonneuve, E. and Gerdes, K., Molecular mechanisms underlying bacterial persisters cell, Cell, 2014, vol. 157, pp. 539–548.

    Article  CAS  PubMed  Google Scholar 

  • Mel’nikov, V.G., Gal’chenko, V.F., and El’-Registan, G.I., Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum, Microbiology (Moscow), 2014, vol. 83, no. 1, pp. 15–28.

    Google Scholar 

  • Muller, C.M., Aberg, A., Straseviciene, J., Emody, L., and Uhlin, B.E., Tipe I fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMR, PLoS Pathog., 2009, vol. 5, no. 2, el. 000303.

    Article  Google Scholar 

  • Muller, C.M., Dobrindt, U., Nagy, G., Emödy, L, Uhlin, B.E., and Hacker, J., Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli, J. Bacteriol., 2006, vol. 188, no. 15, pp. 5428–5438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oleskin, A.V., Network structures in biosystems, Zh. Obshch. Biol., 2013, vol. 74, no. 2, pp. 112–138.

    CAS  PubMed  Google Scholar 

  • Orruno, M., Kaberdin, V.R., and Arana, I., Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments, World J. Microbiol. Biotechnol., 2017, vol. 33, no. 3, pp. 45. doi 10.1007/s11274-017-2218-5

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Romero, M.A. and Casadesus, J., Contribution of phenotypic heterogeneity to adaptive antibiotic resistance, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 1, pp. 355–360.

    Article  PubMed  Google Scholar 

  • Schnetz, K., Fine-tuned growth phase control of dps encoding DNA protection protein by FIS and H-NS, Mol. Microbiol., 2008, vol. 68, pp. 1345–1347.

    Article  CAS  PubMed  Google Scholar 

  • Solyanikova, I.P., Mulyukin, A.L., Suzina, N.E., El-Registan, G.I., and Golovleva, L.A., Improved xenobioticdegrading activity of Rhodococcus opacus strain 1cp after dormancy, J. Environ. Sci. Health B., 2011, vol. 46, pp. 638–647. doi 10.1080/03601234.2011.594380

    Article  CAS  PubMed  Google Scholar 

  • Stasiuk, M. and Kozubek, A., Biological activity of phenolic lipids, Cell. Mol. Life Sci., 2010, vol. 67, pp. 841–860.

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose, S. and Mobley, H.L., Virulence and fitness determinants of uropathogenic Escherichia coli, Microbiol. Spectr., 2015, vol. 3, no. 4. doi 10.1128/microbiolspec.UTI-0015-2012

    Google Scholar 

  • van der Woude, M.W., Phase variation: how to create and coordinate population diversity, Curr. Opin. Microbiol., 2011, vol. 14, no. 2, pp. 205–211.

    Article  PubMed  Google Scholar 

  • Zhou, L., Zhang, L.-H, Cámara, M., and He, Y.-W., The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover, Trends Microbiol., 2017, vol. 25, no. 4, pp. 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Zolotukhina, M., Ovcharova, I., Eremina, S., Errais Lopes, L., and Mironov, A.S., Comparison of the structure and regulation of the udp gene of Vibrio cholerae, Yersinia pseudotuberculosis, Salmonella typhimurium, and Escherichia coli, Res. Microbiol., 2003, vol. 154, pp. 510–520.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Loiko.

Additional information

Original Russian Text © N.G. Loiko, K.V. Lobanov, Yu.A. Nikolaev, A.N. Kozlova, G.I. El’-Registan, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 5, pp. 551–563.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiko, N.G., Lobanov, K.V., Nikolaev, Y.A. et al. Regulation of phase variation in type I pili formation in Escherichia coli: Role of alkylresorcinols, microbial autoregulators. Microbiology 86, 560–570 (2017). https://doi.org/10.1134/S0026261717050149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717050149

Keywords

Navigation