Skip to main content
Log in

Multi-species biofilms in ecology, medicine, and biotechnology

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The structure, composition, and developmental patterns of multi-species biofilms are analyzed, as are the mechanisms of interaction of their microbial components. The main methodological approaches used for analysis of multi-species biofilms, including omics technologies, are characterized. Environmental communities (cyanobacterial mats and methanotrophic communities), as well as typical multi-species communities of medical importance (oral cavity, skin, and intestinal microbiomes), are described. A special section deals with the role of multi-species biofilms in such biotechnological processes as wastewater treatment, heavy metal removal, corrosion control, and environmental bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abram, F., Systems-based approaches to unravel multi-species microbial community functioning, Comput. Structur. Biotechnol. J., 2015, vol. 13, pp. 24–32.

    Article  Google Scholar 

  • Adam, B., Baillie, G.S., and Douglas, L.J., Mixed species biofilms of Candida albicans and Staphylococcus epidermidis, J. Med. Microbiol., 2002, vol. 51, pp. 344–349.

    Article  PubMed  Google Scholar 

  • Ahmad, F., Babalola, O.O., and Tak, H.I., Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms, Anal. Bioanal. Chem., 2012. doi: 10.1007/s00216-012-6091-7

    Google Scholar 

  • Al-Bader, D., Kansour, M., Rayan, R., and Radwan, S.S., Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants, Environ. Sci. Pollut. Res., 2012, vol. 20, pp. 3252–3262.

    Article  CAS  Google Scholar 

  • Al-Mailem, D.M., Kansour, M.K., and Radwan, S.S., Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes, Can. J. Microbiol., 2014, vol. 60, pp. 477–486.

    Article  CAS  PubMed  Google Scholar 

  • Ali, H., Greco-Stewart, V.S., Jacobs, M.R., Yomtovian, R.A., Rood, I.G.H., de Korte, D., and Ramirez-Arcos, S.M., Characterization of the growth dynamics and biofilm formation of Staphylococcus epidermidis strains isolated from contaminated platelet units, J. Med. Microbiol., 2014, vol. 63, pp. 884–891.

    Article  CAS  PubMed  Google Scholar 

  • Almstrand, R., Persson, F., Daims, H., Ekenberg, M., Christensson, M., Wilén, B.-M., Sörensson, F., and Hermansson, M., Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox, Int. J. Mol. Sci., 2014, vol. 15, pp. 2191–2206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angeletti, S., Dicuonzo, G., Avola, A., Crea, F., Dedej, E., Vailati, F., Farina, C., and De Florio, L., Viridans group streptococci clinical isolates: MALDI-TOF mass spectrometry versus gene sequence-based identification, PLoS One, 2015. doi: 10.1371/journalpone.0120502

    Google Scholar 

  • Ansari, M.J., Al-Ghamdi, A., Usmani, S., Al-Waili, N.S., Sharma, D., Nuru, A., and Al-Attal, Y., Effect of jujube honey on Candida albicans growth and biofilm formation, Arch. Med. Res., 2013, vol. 44, pp. 352–360.

    Article  PubMed  Google Scholar 

  • Arps, P.J., Earthman, J.C., Xu, L., Syrett, B.C., Green, R., Wood, T., and Mansfield, F.B., Field evaluation of corrosion control using regenerative biofilms (CCURB), Conf. Paper. Corrosion 2003. 16–20 March, San Diego, California, NACE International. Document ID: NACE-03714.

  • Asahi, Y., Miura, J., Tsuda, T., Kuwabata, S., Tsunashima, K., Noiri, Y., Sakata, T., Ebisu, S., and Hayashi, M. Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids, AMB Express, 2015, vol. 5, no. 6. http://wwwncbinlmnihgov/pmc/articles/PMC4305086

  • Audrain, B., Farag, M.A., Ryu, C.-M., and Ghigo, J.-M., Role of bacterial volatile compounds in bacterial biology, FEMS Microbiol. Rev., 2015, vol. 39, pp. 222–233.

    Article  PubMed  Google Scholar 

  • Azevedo, N.F., Lopes, S.P., Keevil, C.W., Pereira, M.O., and Vieira, M.J. Time to “go large” on biofilm research: advantages of an omics approach, Biotechnol. Lett., 2009, vol. 31, pp. 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Baum, M.M., Kainovic’, A., O’Keeffe, T., Pandita, R., McDonald, K., Wu, S., and Webster, P. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil, BMC Microbiol., 2009, vol. 9, pp. 1–13. http://wwwbiomedcentralcom/1471-2180/9/103

    Article  CAS  Google Scholar 

  • Beaussart, A., Herman, P., El-Kirat-Chatel, S., Lipke, P.N., Kucharíková, S., Van Dijck, P., and Dufrêne, Y.F., Single-cell force spectroscopy of the medically-important Staphyloccocus epidermidis–Candida albicans interaction, Nanoscale, 2013. 5(22). doi: 10.1039/c3nr03272h

  • Beyenal, H. and Babauta, J.T., Microscale gradients and their role in electron-transfer mechanisms in biofilms, Biochem. Soc. Trans., 2012, vol. 40, pp. 1315–1318.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharyya, S., Gupta, P., Banerjee, G., Jain, A., and Singh, M., Inhibition of biofilm formation and lipase in Candida albicans by culture filtrate of Staphylococcus epidermidis in vitro, Int. J. Appl. Basic Med. Res., 2014, vol. 4, pp. 27–30.

    Article  Google Scholar 

  • Bochner, B.R., New technologies to assess genotype–phenotype relationships, Nature Rev. Genet., 2003, vol. 4, pp. 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis, H., Fillinger, L., and Stal, L.J., Coastal microbial mat diversity along a natural salinity gradient, PLoS One, 2013. 8(5):e63166. doi: 10.1371/journalpone.0063166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bolhuis, H., Cretoiu, M.S., and Stal, L.J., Molecular ecology of microbial mats, FEMS Microbiol. Ecol., 2014, vol. 90, pp. 335–350.

    CAS  PubMed  Google Scholar 

  • Botchkova, E.A., Litti, Yu. V., Kuznetsov, B.B., and Nozhevnikova, A.N., Microbial biofilms formed in a laboratory-scale anammox bioreactor with flexible bruch carrier, J. Biomater. Nanobiotechnol., 2014, vol. 5, pp. 76–82.

    Article  CAS  Google Scholar 

  • Botchkova, E.A., Plakunov, V.K., and Nozhevnikova, A.N., Dynamics of biofilm formation on microscopic slides sbmerged in an anammox bioreactor, Microbiology (Moscow), 2015, vol. 84., no. 3, pp. 456–460.

    Article  CAS  Google Scholar 

  • Breugelmans, P., Barken, K.B., Tolker-Nielsen, T., Hofkens, J., Dejonghe, W., and Springael, D., Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron, FEMS Microbiol. Ecol., 2008, vol. 64, pp. 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Brileya, K.A., Camilleri, L.B., and Fields, M.W., 3D-Fluorescence in situ hybridization of intact, anaerobic biofilm, Methods Mol. Biol., Sun, L. and Shou, W., Eds., New York: Springer, 2014, vol. 1151, pp. 189–197.

    CAS  Google Scholar 

  • Burmølle, M., Ren, D., Bjarnsholt, T., and Sørensen, S.J., Interactions in multi-species biofilms: do they actually matter?, Trends Microbiol., 2014, vol. 22, pp. 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Burow, L.C., Woebken, D., Marshall, I.P.G., Lindquist, E.A, Bebout, B.M., Prufert-Bebout, L., Hoehler, T.M., Tringe, S.G., Pett-Ridge, J., Weber, P.K., Spormann, A.M., and Singer, S.W., Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics, ISME J., 2013, vol. 7, pp. 817–829.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao, B., Shi, L., Brown, R.N., Xiong, Y., Fredrickson, J.K., Romine, M.F., Marshall, M.J., Lipton, M.S., and Beyenal, H., Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics, Environ. Microbiol., 2011, vol. 13, pp. 1018–1031.

    Article  CAS  PubMed  Google Scholar 

  • Chae, K.-J., Kim, S.-M., Oh, S.-E., Ren, X., Lee, J., and Kim, I.S., Spatial distribution and viability of nitrifying, denitrifying and ANAMMOX bacteria in biolms of sponge media retrieved from a full-scale biological nutrient removal plant, Bioproces. Biosyst. Eng., 2012, vol. 35, pp. 1157–1165.

    Article  CAS  Google Scholar 

  • Chai, L., Huang, S., Yang, Z., Peng, B., and Huang, Y., Cr(VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag, J. Hazard Mater., 2009, vol. 167, pp. 516–522.

    Article  CAS  PubMed  Google Scholar 

  • Chalupova, J., Raus, M., Sedlarova, M., and Sebala, M., Identification of fungal microorganisms by MALDI-TOF mass spectrometry, Biotechnol. Adv., 2014, vol. 32, pp. 230–241.

    Article  CAS  PubMed  Google Scholar 

  • Chandra, J., Mukherjee, P.K., and Ghannoum, M.A., In vitro growth and analysis of Candida biofilms, Nat. Protoc., 2008, vol. 3, pp. 1909–1924.

    Article  CAS  PubMed  Google Scholar 

  • Chao, Y. and Zhang, T., Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm, Anal. Bioanal. Chem., 2012, vol. 404, pp. 1465–1475.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chao, Q.-T., Lee, T.-F., Teng, S.-H., Peng, L.-Y., Chen, P.H., Teng, L.-J., and Hsueh, P.-R., Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts, PLoS One, 2014. 9(10): e109376. doi: 10.1371/journalpone.0109376

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho, S., Takahashi, Y., Fujii, N., Yamada, Y., Satoh, H., and Okabe, S. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor, Chemosphere, 2010, vol. 78, pp. 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, G.J. and Brüggemann, H., Bacterial skin commensals and their role as host guardians, Benef. Microbes, 2014, vol. 5, pp. 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J.K., Hutchison, J.R., Renslow, R.S., Kim, Y.-M., Chrisler, W.B., Engelmann, H.E., Dohnalkova, A.C., Hu, D., Metz, T.O., Fredrickson, J.K., and Lindemann, S.R., Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions, Front. Microbiol., 2014, vol. 5. A. 109. wwwfrontiersinorg

    Article  PubMed Central  PubMed  Google Scholar 

  • Conlon, B.P., Rowe, S.E., and Lewis, K., Persister cells in biofilm associated infections, Adv. Exp. Med. Biol., 2015, vol. 831, pp. 1–9.

    Article  PubMed  Google Scholar 

  • Coppenhagen-Glazer, S., Sol, A., Abed, J., Naor, R., Zhang, X., Han, Y.W, and Bachrach, G., Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth, Infect. Immun., 2015, vol. 83, pp. 1104–1113.

    CAS  PubMed  Google Scholar 

  • Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., and Marrie, T.J., Bacterial biofilms in nature and disease, Annu. Rev. Microbiol., 1987, vol. 41, pp. 435–464.

    Article  CAS  PubMed  Google Scholar 

  • Cote, C., Rosas, O., and Basseguy, R., Geobacter sulfurreducens: an iron reducing bacterium that can protect carbon steel against corrosion?, Corrosion Sci., 2015, vol. 94, pp. 104–113.

    Article  CAS  Google Scholar 

  • Daims, H. and Wagner, M., In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs, in Methods Enzymol., Abelson, J.N. and Simon, M.L., Eds., San Diego: Elsevier, 2011, vol. 496, pp. 185–215.

    Article  PubMed  Google Scholar 

  • Darwish, S.F. and Asfour, H.A.E., Investigation of biofilm forming ability in Staphylococci causing bovine mastitis using phenotypic and genotypic assays, Sci. World J., 2013. Article ID378492. 9 p. http://dxdoiorg/10.1155/2013/378492

    Google Scholar 

  • De Muynck, W., Debrouwer, D., De Belie, N., and Verstraete, W., Bacterial carbonate precipitation improves the durability of cementitious materials, Cem. Concr. Res., 2008, vol. 38, pp. 1005–1014.

    Article  CAS  Google Scholar 

  • Diaz, P.I., Strausbaugh, L.D., and DongariBagtzoglou, A., Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench, Front. Cell. Infect. Microbiol. 2014, vol. 4. A. 101. wwwfrontiersinorg

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dillon, J.G., Miller, S., Bebout, B., Hullar, M., Pinel, N., and Stahl, D.A., Spatial and temporal variability in a stratified hypersaline microbial mat community, FEMS Microbiol. Ecol., 2009, vol. 68, pp. 46–58.

    Article  CAS  PubMed  Google Scholar 

  • Dufreêne, Y.F., Sticky microbes: forces in microbial cell adhesion, Trends Microbiol., 2015. 1–7. http://dx. doiorg/10.1016/jtim.2015.01.011

    Google Scholar 

  • Dupuy, A.K., David, M.S., Li, L., Heider, T.N., Peterson, J.D., Montano, E.A., Dongari-Bagtzoglou, A., Diaz, P.I., and Strausbaugh, L.D., Redefining the human oral mycobiome with improved practices in ampliconbased taxonomy: discovery of Malassezia as a prominent commensal, PLoS One, 2014. 9:e90899. doi: 10.1371/journalpone.0090899

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elson, C.O. and Alexander, K.L., Host-microbiota interactions in the intestine, Digest. Diseas., 2015, vol. 33, pp. 131–136.

    Article  Google Scholar 

  • Everroad, R.C., Otaki, H., Matsuura, K., and Haruta, S., Diversification of bacterial community composition along a temperature gradient at a thermal spring, Microb. Environ., 2012, vol. 27, pp. 374–381.

    Article  Google Scholar 

  • Famdale, R.W., Sayers, C.A., and Barrett, A.J., A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures, Connect. Tissue Res., 1982, vol. 9, pp. 247–248.

    Article  Google Scholar 

  • Faust, K. and Raes, J., Microbial interactions: from networks to models, Nature Revs. Microbiol., 2012, vol. 10, pp. 538–550.

    Article  CAS  Google Scholar 

  • Feazel, L.M., Baumgartner, L.K., Peterson, K.L., Frank, D.N., Harris, J.K., and Pace, N.R., Opportunistic pathogens enriched in showerhead biofilms, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 16393–16399.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandes, I., Vazques-Padin, J.R., Mosquera-Corral, A., Campos, J.L., and Mendes, R., Biofilm and granular systems to improve Anammox biomass retention, Biochem. Eng. J., 2008, vol. 42, pp. 308–313.

    Article  CAS  Google Scholar 

  • Findley, K., Oh, J., Yang, J., Conlan, S., Deming, C., Meyer, J.A., Schoenfeld, D., Nomicos, E., and Park, M., Topographic diversity of fungal and bacterial communities in human skin, Nature, 2013, vol. 498, pp. 367–370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finkenstadt, V.L., Cote, G.L., and Willett J.L., Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides, Biotechnol. Lett., 2011, vol. 33, pp. 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  • Fish, K.E., Collins, R., Green, N.H., Sharpe, R.L., Douterelo, I., Osborn, A.M., and Boxall, J.B., Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system, PLoS One, 2015. doi: 10.1371/journalpone.0115824 February 23.

    Google Scholar 

  • Franzosa, E.A., Morgan, X.C., Segata, N., Waldron, L., Reyes, J., Earl, A.M., Giannoukos, G., Boylan, M.R., Ciulla, D., Gevers, D., Izard, J., Garrett, W.S., Chan, A.T., and Huttenhower, C., Relating the metatranscriptome and metagenome of the human gut, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 2329–2338.

    Article  CAS  Google Scholar 

  • Frols, S., Archaeal biofilms: widespread and complex, Biochem. Soc. Trans., 2013, vol. 41, pp. 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Fuchsman, C.A., Staley, J.T., Oakley, B.B., Kirkpatrick, J.B., and Murray, J.W., Free-living and aggregate-associated Planctomycetes in the Black Sea, FEMS Microbiol. Ecol., 2012, vol. 80, pp. 402–416.

    Article  CAS  PubMed  Google Scholar 

  • Furuhata, K., Ishizaki, N., and Fukuyama, M. Characterization of heterotrophic bacteria isolated from the biofilm of a kitchen sink, Biocontrol Sci., 2010, vol. 358, pp. 91–118.

    Google Scholar 

  • Gannesen, A.V., Zhurina, M.V., Veselova, M.A., Khmel’, I.A., and Plakunov, V.K., Regulation of biofilm formation by Pseudomonas chlororaphis in an in vitro system, Microbiology (Moscow), 2015, vol. 84, no. 3, pp. 319–327.

    Article  CAS  Google Scholar 

  • Giacomoni, P.U., Mammone, T., and Teri, M., Genderlinked differences in human skin, J. Dermatol. Sci., 2009, vol. 55, pp. 44–149.

    Article  CAS  Google Scholar 

  • Gieseke, A., Arnz, P., Amann, R., and Schramm, A., Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactorand microscale investigations, Water Res., 2002, vol. 36, pp. 501–509.

    Article  CAS  Google Scholar 

  • Hall-Stoodley, L., Costerton, J.W., and Stoodley, P., Bacterial biofilms: from the natural environment to infectious diseases, Nature Rev. Microbiol., 2004, vol. 2, pp. 95–108.

    Article  CAS  Google Scholar 

  • Herath, H.M.L.I., Upam, A., Rajapakshab, U., Vithanageb, M., and Seneviratnea, G., Developed fungal–bacterial biofilms as a novel tool for bioremoval of hexavalent chromium from wastewater, Chem. Ecol., 2014, vol. 30, pp. 418–427.

    Article  CAS  Google Scholar 

  • Hidalgo, G., Burns, A., Herz, E., Hay, A.G., Houston, P.L., Wiesner, U., and Lion, L.W., Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors, Appl. Environ. Microbiol., 2009, vol. 75, pp. 7426–7435.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hogardt, M. and Heesemann, J., Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung, Curr. Top. Microbiol. Immunol., 2013, vol. 358, pp. 91–118.

    CAS  PubMed  Google Scholar 

  • Horz, H.-P., Archaeal lineages within the human microbiome: absent, rare or elusive?, Life, 2015, vol. 5, pp. 1333–1345.

  • Hurse, T.J. and Keller, J., Reconsidering the use of photosynthetic bacteria for removal of sulfide from wastewater, Biotechnol. Bioeng., 2004, vol. 85, pp. 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, Y.-M.S. and Burnham, C.-A.D., MALDI-TOF MSidentification of anaerobic bacteria: assessment of pre-analytical variables and specimen preparation techniques, Diagnost. Microbiol. Infect. Dis., 2014. doi: 10.1016/jdiagmicrobio.2014.02.007

    Google Scholar 

  • Hsueh, P.-R., Lee, T.F., Du, S.-H., Teng, S.-H., Liao, C.-H., Sheng, W.-H., and Teng, L.-J., Bruker biotyper matrixassisted laser desorption ionization–time of flight mass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria species, J. Clin. Microbiol., 2014, vol. 52, pp. 2371–2379.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang, R., Li, M., and Gregory, R.L., Bacterial interactions in dental biofilm, Virulence, 2011, vol. 2, pp. 435–444.

    Article  PubMed Central  PubMed  Google Scholar 

  • Iwase, T., Uehara, Y., Shinji, H., Tajima, A., Seo, H., Takada, K., Agata, T., and Mizunoe, Y., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization, Nature, 2010, vol. 465, pp. 346–349.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, V.A., Paulse, A.N., Bester, A.A., Neethling, J.H., Khana, S., and Khanb, W., Bioremediation of metal contamination in the Plankenburg River, Western Cape, South Africa, Int. Biodeterior. Biodegr., 2009, vol. 63, pp. 559–568.

    Article  CAS  Google Scholar 

  • Jakubovics, N.S., Yassin, S.A., and Rickard, A.H., Community interactions of oral streptococci, Adv. Appl. Microbiol., 2014, vol. 87, pp. 43–110.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, A.W.F. and Kersten, S., The role of the gut microbiota in metabolic health, FASEB. J., 2015. Apr. 28. pii: fj.14-269514. wwwfasebjorg

    Google Scholar 

  • Jayaraman, A., Ornek, D., Duarte, D.A., Lee, C.-C., Mansfeld, F.B., and Wood, T.K., Axenic aerobic biofilms inhibit corrosion of copper and aluminum, Appl. Microbiol., Biotechnol. 1999, vol. 52, pp. 787–790.

    Article  CAS  Google Scholar 

  • Jefferson, K.K., What drives bacteria to produce a biofilm?, FEMS Microbiol. Lett., 2004, vol. 236, pp. 163–173.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, A.B. and Webb, C., Treatment of H2S-containing gases: A review of microbiological alternatives, Enz. Microbial Technol., 1995, vol. 17, pp. 2–10.

    Article  CAS  Google Scholar 

  • Ivleva, N.P., Wagner, M., Szkola, A., Horn, H., Niessner, R., and Haisch, C., Label-free in situ SERS imaging of biofilms, J. Phys. Chem., 2010, vol. 114, pp. 10184–10194.

    Article  CAS  Google Scholar 

  • Kamaeva, A.A., Vasilchenko, A.S., and Deryabin, D.G., Atomic force microscopy reveals a morphological differentiation of Chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-Lhomoserine lactone, PLoS One, 2014. 9(8): e103741. doi:10.1371/journalpone.0103741

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim, H.-S. and Park, H.-D., Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14, PLoS One, 2013. 8(9): e76106. doi: 10.1371/journal. pone.0076106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, T.G., Yi, T., Lee, E.-H., Ryu, H.W., and Cho, K.-S., Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses, Appl. Microbiol. Biotechnol., 2012, vol. 95, pp. 1051–1059.

    Article  CAS  PubMed  Google Scholar 

  • Kindaichi, T., Tsushima, I., Ogasawara, Y., Shimokawa, M., Ozaki, N., Satoh, H., and Okabe, S., In situ activity and spatial organization of anaerobic ammonium oxidizing (anammox) bacteria in biofilms, Appl. Environ. Microbiol., 2007, vol. 73, pp. 4931–4939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kindaichi, T., Yuri, S., Ozaki, N., and Ohashi, A., Ecophysiological role and function of uncultured Chlroflexi in an anammox reactor, Water Sci. Technol., 2012, vol. 66, pp. 2556–2561.

    Article  CAS  PubMed  Google Scholar 

  • Kip, N. and van Veen, J.A., The dual role of microbes in corrosion, ISME J., 2015, vol. 9, pp. 542–555.

    Article  CAS  PubMed  Google Scholar 

  • Klatt, C.G., Liu, Z., Ludwig, M., Kuhl, M., Jensen, S.I., Bryant, D.A., and Ward, D.M., Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring, ISME J., 2013a, vol. 7, pp. 1775–1789.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klatt, C.G., Inskeep, W.P., Herrgard, M.J., Jay, Z.J., Rusch, D.B., Tringe, S.G., Parenteau, M.N., Ward, D.M., Boomer, S.M., Bryant, D.A., and Miller, S.R., Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments, Front. Microbiol., 2013b, vol. 4, pp. 1–23.

    Article  CAS  Google Scholar 

  • Kolenbrander, P.E., multi-species communities: interspecies interactions influence growth on saliva as sole nutritional source, Int. J. Oral. Sci., 2011, vol. 3, pp. 49–54.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kostka, J.E. and Green, S.J., Microorganisms and processes linked to uranium reduction and immobilization, in Microbial Metal and Metalloid Metabolism: Advances and Applications, Stolz, J.F. and Oremland, R.S., Eds., Washington: ASM, 2011, pp. 117–138.

    Chapter  Google Scholar 

  • Kratochvil, D. and Volesky, B., Biosorption of Cu from ferruginous wastewater by algal biomass, Water Res., 1998, vol. 32, pp. 2760–2768.

    Article  CAS  Google Scholar 

  • Larsen, P., Olesen, B.H., Nielsen, P.H., and Nielsen, J.L., Quantification of lipids and protein in thin biofilms by fluorescence staining, Biofouling, 2008, vol. 24, pp. 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Li, X.-R., Du, B., Fu, H.-X., Wang, R.-F., Shi, J.-H., Wang, Y., Jetten, M.S.M., and Quan, Z.-X., The bacterial diversity in ananaerobic ammonium-oxidizing (anammox) reactor community, Syst. Appl. Microbiol., 2009, vol. 32, pp. 278–289.

    Article  CAS  PubMed  Google Scholar 

  • Li, X.-R., Xiao, Y., Liao, D., Zheng, W., Yi, T., Yang, Q., and Zeng, G., Granulation of simultaneous partial nitrification and anammox biomass in one single SBR system, Appl. Biochem. Biotechnol., 2011, vol. 163, pp. 1053–1065.

    Article  CAS  PubMed  Google Scholar 

  • Liehr, S.K., Chen, H.J. and Lin, S.H., Metals removal by algal biofilms, Water Sci. Technol., 1994, vol. 30, pp. 59–68.

    CAS  Google Scholar 

  • Liu, C., Yamamoto, Y., Nishiyama, T., Fujii, T., and Furukawa, K., Effect of salt concentration in anammox treatment using non woven biomass carrier, J. Biosci. Bioeng., 2009, vol. 107, pp. 519–523.

    Article  CAS  PubMed  Google Scholar 

  • Llirós, M., Gajua, N., de Oteyza, T.G., Grimaltb, J.O., Estevea, I., and Martínez-Alonso, M., Microcosm experiments of oil degradation by microbial mats. II. The changes in microbial species, Sci. Total Environ., 2008, vol. 393, pp. 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Loozen, G., Ozcelik, O., Boon, N., De Mol, A., Schoen, C., Quirynen, M., and Teughels, W., Inter-bacterial correlations in subgingival biofilms: a largescale survey, J. Clin. Periodontol., 2014, vol. 41, pp. 1–10.

    Article  PubMed  Google Scholar 

  • López-López, A., Richter M., Peña, A., Tamames, J., and Rosselló-Móra, R., New insights into the archaeal diversity of a hypersaline microbial mat obtained by a metagenomic approach, Syst. Appl. Microbiol., 2013, vol. 36, pp. 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Lourenco, A., Ferreira, A., Veiga, N., Machado, I., Pereira, M.O., and Azevedo N.F., BiofOmics: a web platform for the systematic and standardized collection of highthroughput biofilm data, PLoS One, 2012. 7(6): e39960. doi:10.1371/journalpone.0039960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., and Thiele, I., Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes, Front. Genet., 2015, vol. 6. A. 14. wwwfrontiersinorg

    Google Scholar 

  • Mahajan, A., Singh, B., Kashyap, D., Kumar, A., and Mahajan, P., Interspecies communication and periodontal disease, Sci. World J., 2013. doi: 10.1155/2013/765434

    Google Scholar 

  • Mang, T.S., Tayal, D.P., and Baier, R., Photodynamic therapy as an alternative treatment for disinfection of bacteria in oral biofilms, Laser. Surg. Med., 2012, vol. 44, pp. 588–596.

    Article  Google Scholar 

  • Mart’yanov, S.V., Zhurina, M.V., El’Registan, G.I., and Plakunov, V.K., Activation of formation of bacterial biofilms by azithromycin and prevention of this effect, Microbiology (Moscow), 2014, vol. 83, no. 6, pp. 723–731.

    Article  CAS  Google Scholar 

  • Mashima, I. and Nakasawa, F. The interaction between Streptococcus spp. and Veillonella tobetsuens on the early stages of oral biofilm formation, J. Bacteriol., 2015. doi: 10.1128/JB.02512-1.

    Google Scholar 

  • McLean, J.S., Advancements toward a systems level understanding of the human oral microbiome, Front. Cell. Infect. Microbiol., 2014, vol. 4. A. 98. wwwfrontiersinorg

    PubMed Central  PubMed  Google Scholar 

  • Melander, R.J. and Melander, C., Innovative strategies for combating biofilm-based infections, Adv. Exp. Med. Biol., 2015, vol. 831, pp. 69–91.

    Article  PubMed  Google Scholar 

  • Metayer-Levrel, G.L., Castanier, L.S., Orial, G., Loubière, J.-F., and Perthuisot, J.-P., Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony, Sediment. Geol., 1999, vol. 126, pp. 25–34.

    Article  Google Scholar 

  • Molina, M.A., Ramos, J.-L., and Espinosa-Urgel, M., Plant-associated biofilms, Revs. Environ. Sci. BioTechnol., 2003, vol. 2, pp. 99–108.

    Article  Google Scholar 

  • Momeni, B., Brileya, K.A., Fields, M.W., and Shou, W., Strong inter-population cooperation leads to partner intermixing in microbial communities, Elife, 2013. Jan. 22, 2:e00230. doi: 10.7554/eLife.00230

    Google Scholar 

  • Moran, N.A., McLaughlin, H.J., and Sorek, R., The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria, Science, 2009, vol. 323, pp. 379–382.

    Article  CAS  PubMed  Google Scholar 

  • Morris, J.J., Lenski, R.E., and Zinser, E.R., The black queen hypothesis: evolution of dependencies through adaptive gene loss, mBio, 2012. 3(2):e00036–12. doi: 10.1128/mBio.00036-12

    Article  PubMed Central  PubMed  Google Scholar 

  • Netuschil, L., Auschill, T.M., Sculean, A., and Arweiler, N.B., Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms–which stain is suitable?, BMC Oral Health, 2014, vol. 14, pp. 2–12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Neu, T.R. and Lawrence, J.R., Investigation of microbial biofilm structure by laser scanning microscopy, Adv. Biochem. Eng. Biotechnol., 2014, vol. 146, pp. 1–51.

    PubMed  Google Scholar 

  • Neu, T.R. and Lawrence, J.R., Innovative techniques, sensors, and approaches for imaging biofilms at different scales, Trends Microbiol., 2015, vol. 23, pp. 233–242.

    CAS  PubMed  Google Scholar 

  • Ni, S.-Q., Sun, N., Yang, H., Zhang, J., and Ngo, H.H., Distribution of extracellular polymeric substances in anammox granules and their important roles during anammox granulation, Biochem. Engineer. J., 2015. http:// dxdoiorg/10.1016/jbej.2015.05.014

    Google Scholar 

  • Nikolaev, Yu.A. and Plakunov, V.K., Biofilm—“City of microbes” or an analogue of multicellular organisms?, Microbiology (Moscow) 2007, vol. 76, no. 2, pp. 125–138.

    Article  CAS  Google Scholar 

  • Nosyk, O., Haseborg, E., Metzger, U., and Frimmel, F.H., A standardized pre-treatment method of biofilm flocs for fluorescence microscopic characterization, J. Microbiol. Methods, 2008, vol. 75, pp. 449–456.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J., Byrd, A.L., Deming, C., and Conlan, S., NISC comparative sequencing program, Kong, H.H., and Segre, J.A. Biogeography and individuality shape function in the human skin metagenome, Nature, 2014, vol. 514, pp. 59–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okabe, S., Ito, T., and Satoh, H. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions, Appl. Microbiol. Biotechnol., 2003, vol. 63, pp. 322–334.

    Article  CAS  PubMed  Google Scholar 

  • Okabe, S., Kindaichi, T., and Ito, T., Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms, Appl. Environ. Microbiol., 2005, vol. 71, pp. 3987–3994.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orell, A., Frols, S., and Albers, S.-V., Archaeal biofilms: the great unexplored, Annu. Rev. Microbiol., 2013, vol. 67, pp. 337–354.

    Article  CAS  PubMed  Google Scholar 

  • Otaki, H., Everroad, R.C., Matsuura, K., and Haruta, S., Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium, Microb. Environ., 2012, vol. 27, pp. 293–299.

    Article  Google Scholar 

  • Oumeraci, T., Jensen, V., Talbot, S.R., Hofmann, W., Kostrzewa, M., Schlegelberger, B., von Neuhoff, N., and Häussler, S. Comprehensive MALDI-TOF biotyping of the nonredundant harvard Pseudomonas aeruginosa PA14 transposon insertion mutant library, PLoS One, 2015. doi: 10.1371/journalpone.0117144

    Google Scholar 

  • Ovchinnikova, E.S., Krom, B.P., Busscher, H.J., and van der Mei, H.C., Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae, BMC Microbiol., 2012. 12:281. http://wwwbiomedcentralcom/1471-2180/12/281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panda, A., Kurapati, S., Samantaray, J.C., Srinivasan, A., and Khalil, S., MALDI-TOF mass spectrometry proteomic based identifiation of clinical bacterial isolates, Indian J. Med. Res., 2014, vol. 140, pp. 770–777.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pantanella, F., Berlutti, F., Passariello, C., Sarli, S., Morea, C., and Schippa, S., Violacein and biofilm production in Janthinobacterium lividum, J. Appl. Microbiol., 2007, vol. 102, pp. 992–999.

    CAS  PubMed  Google Scholar 

  • Pantanella, F., Valenti, P., Natalizi, T., Passeri, D., and Berlutti, F., Analytical techniques to study microbial biofim on abiotic surfaces: pros and cons of the main techniques currently in use, Annali di igiene, 2013, vol. 25, pp. 31–42.

    CAS  PubMed  Google Scholar 

  • Pastorella, G., Gazzola, G., Guadarrama, S., and Marsili, E., Biofilms: applications in bioremediation, in Microbial Biofilms—Current Research and Applications, Lear, G. and Lewis, G., Eds., Norfolk, UK: Caister Academic Press, 2012, pp. 73–98.

    Google Scholar 

  • Pätzold, R., Keuntje, M., and Anders-von Ahlften, A., A new approach to non-destructive analysis of biofilms by confocal Raman microscopy, Anal. Bioanal. Chem., 2006, vol. 386, pp. 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Pätzold, R., Keuntje, M., Theophile, K., Müller, J., Mielcarek, E., Ngezahayo, A., and Anders-von Ahlften, A., In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy, J. Microbiol. Methods, 2008, vol. 72, pp. 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Peeters, E., Nelis, H.J., and Coenye, T., Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates, J. Microbiol. Methods, 2008, vol. 72, pp. 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez, G., Glez-Pena, D., Azevedo, N.F., Pereira, M.O., Fdez-Riverola, F., and Lourenco, A., Enabling systematic, harmonised and large-scale biofilms data computation: the biofilms experiment workbench, Comp. Meth. Progr. Biomed., 2015, vol. 118, pp. 309–321.

    Article  Google Scholar 

  • Persson, F., Sultana, R., Suarez, M., Hermansson, M., Plaza, E., and Wilen, B.-M., Structure and composition of biofilm communities in a moving bedbiofilm reactor for nitritation–anammox at low temperatures, Biores. Technol., 2014, vol. 154, pp. 267–273.

    Article  CAS  Google Scholar 

  • Plakunov, V.K., Strelkova, E.F., and Zhurina, M.V., Persistence and adaptive mutagenesis in biofilms, Microbiology (Moscow), 2010, vol. 79, no. 4, pp. 424–434.

    Article  CAS  Google Scholar 

  • Plyuta, V.A., Popova, A.A., Koksharova, O.A., and Khmel’, I.A., Effect of volatile organic compounds on Agrobacterium tumefaciens cells during biofilm formation and in mature biofilms, “Perspektivnye napravleniya fizikokhimicheskoi biologii i biotekhnologii” (Promising Directions in Physicochemical Biology and Biotechnology, Proc. 25th Int. Winter Youth Sci. School, Moscow), 2013, p. 104.

    Google Scholar 

  • Potekhina, J.S., Sherisheva, N.G., Povetkina, L.P., Pospelov, A.P., Rakitina, T.A., Warnecke, F., and Gottschalk, G., Role of microorganisms in corrosion inhibition of metals in aquatic habitats, Appl. Microbiol. Biotechnol., 1999, vol. 52, pp. 639–646.

    Article  CAS  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Jian, M., Zhou, Y., Li, Y., Zhang, X., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., and Ehrlich, S.D., A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 2010, vol. 464, pp. 59–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renslow, R.S., Babauta, J.T., Majors, P.D., and Beyenal, H., Diffusion in biofilms respirating in electrodes, Energy Environ. Sci., 2013, vol. 6, pp. 595–607.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S., Bacterial coaggregation: an integral process in the development of multi-species biofilms, Trends Microbiol., 2003, vol. 11, pp. 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, F.A. and Darveau, R.P., Beneficial bacteria of the periodontium, Periodontology, 2002, vol. 30, pp. 40–50.

    Article  Google Scholar 

  • Roberts, A.P., and Kreth, J. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome, Front. Cellul. Infect. Microbiol., 2014, vol. 4. A. 124. wwwfrontiersinorg

    Google Scholar 

  • Robertson, C.E., Spear, J.R., Harris, J.K., and Pace, N.R., Diversity and stratification of archaea in a hypersaline microbial mat, Appl. Environ. Microbiol., 2009, vol. 75, pp. 1801–1810.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roeselers, G., van Loosdrecht, M.C.M., and Muyze, G., Phototrophic biofilms and their potential applications, J. Appl. Phycol., 2008, vol. 20, pp. 227–235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rossi, F. and De Philippis, R., Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats, Life, 2015, vol. 5, pp. 1218–1238.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rudrappa, T., Biedrzycki, M.L., and Bais, H.P., Causes and consequences of plant-associated biofilms, FEMS Microbiol. Ecol., 2008, vol. 64, pp. 153–166.

    Article  CAS  PubMed  Google Scholar 

  • Sadykov, M.R., Zhang, B., Halouska, S., Nelson, J.L., Kreimer, L.W., Zhu, Y., Powers, R., and Somerville, G.A., Using NMR metabolomics to investigate tricarboxylic cid cycle dependent signal transduction in Staphylococcus epidermidis, J. Biol. Chem., 2010, vol. 285, pp. 36616–36624.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandoval-Carrasco, C.A., Ahuatzi-Chacón, D., GalíndezMayer, J., Ruiz-Ordaz, N., Juárez-Ramírez, C., and Martínez-Jerónimo, F., Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor, Biores. Technol., 2013, vol. 145, pp. 33–36.

    Article  CAS  Google Scholar 

  • SanMiguel, A. and Grice, E.A., Interactions between host factors and the skin microbiome, Cell. Mol. Life Sci., 2014, vol. 72, pp. 1499–1515.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, H., Miura, Y., Tsushima, I., and Okabe, S., Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules, Appl. Environ. Microbiol., 2007, vol. 73, pp. 7300–7307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulthess, B., Bloemberg, G.V., Zbinden, R., Böttger, E.C.,and Hombach, M., Evaluation of the Bruker MALDI biotyper for identification of gram-positive rods: development of a diagnostic algorithm for the clinical laboratory, J. Clin. Microbiol., 2014, vol. 52, pp. 1089–1097.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schopf, J.W., Solution to Darwin’s dilemma: discovery of the missing Precambrian record of life, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 6947–6953.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schumacher, G. and Sekoulov, I., Polishing of secondary effluent by an algal biofilm process, Water Sci. Technol., 2002, vol. 46, pp. 83–90.

    CAS  PubMed  Google Scholar 

  • Sergeev, V.N., Gerasimenko, L.M., and Zavarzin, G.A., The proterozoic history and present state of cyanobacteria, Microbiology (Moscow), 2002, vol. 71, no. 6, pp. 623–637.

    Article  CAS  Google Scholar 

  • Shoaie, S. and Nielsen, J., Elucidating the interactions between the human gut microbiota and its host through metabolic modeling, Front. Genet., 2014. 5: 86. doi: 10.3389/fgene.2014.00086

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Simões, L.C., Simões, M., and Vieira, M.J., Intergeneric coaggregation among drinking water bacteria: evidence of a role for Acinetobacter calcoaceticus as a bridging bacterium, Appl. Environ. Microbiol., 2008, vol. 74, pp. 1259–1263.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Singh, R., Paul, D., and Jain, R.K., Biofilms: implications in bioremediation, Trends Microbiol., 2006, vol. 14, pp. 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Smirnova, T.A., Didenko, L.V., Andreev, A.L., Alekseeva, N.V., Stepanova, T.V., and Romanova, Yu.M., Electron microscopic study of Burkholderia cepacia biofilms, Microbiology (Moscow), 2008, vol. 77, no. 1, pp. 55–61.

    Article  CAS  Google Scholar 

  • Smirnova, T.A., Didenko, L.V., Azizbekyan, R.R., and Romanova, Yu.M., Structural and functional characteristics of bacterial biofilms, Microbiology (Moscow), 2010, vol. 79, no. 4, pp. 413–423.

    Article  CAS  Google Scholar 

  • Strelkova, E.A., Zhurina, M.V., Plakunov, V.K., and Belyaev, S.S., Stimulation of biofilm formation by antibiotics, Microbiology (Moscow), 2012, vol. 81, no. 2, pp. 259–262.

    Article  CAS  Google Scholar 

  • Strelkova, E.A., Pozdnyakova, N.V., Zhurina, M.V., Plakunov, V.K., and Belyaev, S.S., Role of the extracellular polymer matrix in resistance of bacterial biofilms to extreme environmental factors, Microbiology (Moscow), 2013, vol. 82, no. 2, pp. 119–125.

    Article  CAS  Google Scholar 

  • Su, Y., Zhang, X., Xia, F.-F., Zhang, Q.-Q., Kong, J.-Y., Wang, J., and He, R., Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems, Syst. Appl. Microbiol., 2014, vol. 37, pp. 200–207.

    Article  PubMed  CAS  Google Scholar 

  • Tawakoli, P.N., Al-Ahmad, A., Hoth-Hannig, W., Hannig, M., and Hannig, C., Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm, Clin. Oral Invest., 2013, vol. 7, pp. 841–850.

    Article  Google Scholar 

  • Terada, A., Yamamoto, T., Tsuneda, S., and Hirata, A., Sequencing batch membrane bio?lm reactor for simultaneous nitrogen and phosphorus removal: novel application of membrane-aerated biofilm, Biotechnol. Bioeng., 2006, vol. 94, pp. 730–739.

    Article  CAS  PubMed  Google Scholar 

  • Tojo, R., Suárez, A, Clemente, M.G., de los ReyesGavilán, C.G., Margolles, A., Gueimonde, M., and RuasMadiedo, P., Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis, World J. Gastroenterol., 2014, vol. 20, pp. 15163–15176.

    Article  PubMed Central  PubMed  Google Scholar 

  • Toté, K., Vanden Berghe, D., Maes, L., and Cos, P., A new colorimetric microtitre model for the detection of Staphylococcus aureus biofims, Lett. Appl. Microbiol., 2008, vol. 46, pp. 249–254.

    Article  PubMed  Google Scholar 

  • Van Dam, A.A., Beveridge, M.C.M., Azim, M.E., and Verdegem, M.C.J., The potential of fish production based on periphyton, Rev. Fish. Biol. Fish., 2002, vol. 1, pp. 1–31.

    Google Scholar 

  • Van den Driessche, F., Rigole, P., Brackman, G., and Coenye, T., Optimization of resazurin-based viability staining for quantification of microbial biofilms, J. Microbiol. Methods, 2014, vol. 98, pp. 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Vega, N.M. and Gore, J., Collective antibiotic resistance: mechanisms and implications, Curr. Opin. Microbiol., 2014, vol. 21, pp. 28–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Videla, H.A. and Herrera, L.K., Microbiologically influenced corrosion: looking to the future, Int. Microbiol., 2005, vol. 8, pp. 169–180.

    CAS  PubMed  Google Scholar 

  • Videla, H.A. and Herrera, L.K., Understanding microbial inhibition of corrosion. A comprehensive overview, Int. Biodeterior. Biodegr., 2009, vol. 63, pp. 896–900.

    Article  CAS  Google Scholar 

  • Vlaeminck, S.E., Terada, A., Smets, B.F., DeClippeleir, H., Schaubroeck, T., Bolca, S., Demeestere, L., Mast, J., Boon, N., Carballa, M., and Verstraete, W., Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox, Appl. Environ. Microbiol., 2010, vol. 76, pp. 900–909.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vornhagen, J., Stevens, M., McCormick, D., Dowd, S.E., Eisenberg, J.N.S., Boles, B.R., and Rickard, A.H., Coaggregation occurs amongst bacteria within and between domestic showerhead biofilms, Biofouling, 2013, vol. 29, pp. 53–68.

    Article  PubMed Central  PubMed  Google Scholar 

  • Walker, B., Kassim, K., and Stokes, L.D., The microbiome: a contributor to health and disease, J. Health Care Poor Underserved., 2015, vol. 26, pp. 62–72.

    Article  PubMed  Google Scholar 

  • Weber, K., Delben, J., Bromage, T.G., and Duarte, S., Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography, FEMS Microbiol. Lett., 2014, vol. 350, pp. 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Weltzer, M.L. and Miller, S.R., Ecological divergence of a novel group of Chloroflexus strains along a geothermal gradient, Appl. Environ. Microbiol., 2013, vol. 79, pp. 1353–1358.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams, K.H., Bargar, J.R., Lloyd, J.R., and Lovley, D.R., Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry, Curr. Opin. Biotechnol.,2013, vol. 24, pp. 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., and Caldwell, D.E., Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation, Appl. Environ. Microbiol., 1995, vol. 61, pp. 152–158.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xie, Z., Thompson, A., Kashleva, H., and Dongari-Bagtzoglou, A., A quantitative real-time RT-PCR assay for mature C. albicans biofilms, BMC Microbiol., 2011, vol. 11, p. 93. http://wwwbiomedcentralcom/1471-2180/11/93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, P. and Gunsolley, J., Application of metagenomics in understanding oral health and disease, Virulence, 2014, vol. 5, pp. 424–432.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang, L., Liu, Y., Wu, H., Høiby, N., Molin, S., and Song, Z., Current understanding of multi-species biofilms, Int. J. Oral. Sci., 2011, vol. 3, pp. 74–81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zarasvand, K.A. and Rai, V.R., Microorganisms: induction and inhibition of corrosion in metals, Int. Biodeterior. Biodegrad., 2014, vol. 87, pp. 66–74.

    Article  CAS  Google Scholar 

  • Zavarzin, G.A., Orleanskii, V.K., Gerasimenko, L.V., Pushko, S.N., and Ushatinskaya, G.T., Laboratory simulation of cyanobacterial mats of the alkaline geochemical barrier, Microbiology (Moscow), 2003, vol. 72, no. 1, pp. 80–85.

    Article  CAS  Google Scholar 

  • Zdorovenko, E.L., Shashkov, A.S., Zhurina, M.V., Plakunov, V.K., and Knirel, Y.A., Structure of the O-specific polysaccharides from planktonic and biofilm cultures of Pseudomonas chlororaphis 449, Carbohydr. Res., 2015, vol. 404, pp. 93–97.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Halouska, S., Schiaffo, C.E., Sadykov, M.R., Somerville, G.A., and Powers, R., NMR analysis of a stress response metabolic signaling network, J. Proteom. Res., 2011, vol. 10, pp. 3743–3754.

  • Zhang, B. and Powers, R., Analysis of bacterial biofilms using NMR-based metabolomics, Future Med. Chem., 2012, vol. 4, pp. 1273–1306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhurina, M.V., Kostrikina, N.A., Parshina, E.Yu., Strelkova, E.A., Yusipovich, A.I., Maksimov, G.V., and Plakunov, V.K., Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods, Microbiology (Moscow), 2013, vol. 82, no. 4, pp. 517–524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Botchkova.

Additional information

Original Russian Text © A.N. Nozhevnikova, E.A. Botchkova, V.K. Plakunov, 2015, published in Mikrobiologiya, 2015, Vol. 84, No. 6, pp. 623–644.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozhevnikova, A.N., Botchkova, E.A. & Plakunov, V.K. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology 84, 731–750 (2015). https://doi.org/10.1134/S0026261715060107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715060107

Keywords

Navigation