Skip to main content
Log in

Regulation of organophosphate metabolism in cyanobacteria. A review

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacteria sense the environmental phosphate level and respond accordingly with the help of a two component regulatory system SphS-SphR orthologous to PhoR-PhoB of E. coli, where SphS act as a sensor kinase and SphR as a response regulator. Under phosphate limiting condition SphS-SphR regulates the expression of many genes including genes which do not have the direct role in metabolism and transport of phosphate. Thus there is some crosstalk mechanism which connects this regulatory system to the other metabolic processes. Different types of enzymes and transporters are expressed by cyanobacteria under phosphate limitation to release and transport the phosphate from different organic compounds present in the environment. Genes encoding these enzymes and transporters contain Pho boxes in their promoter region where SphR binds and regulate their expression under phosphate limitation. The machinery and mechanism of regulation is not uniform in cyanobacteria as it varies in different groups according to their evolutionary adaptations. This review article is summarizing the reports on machinery and mechanism of organophosphate metabolism in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henson, B.J., Hesselbrock, S.M., Watson, L.E., and Barnum, S.R., Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nif D, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 493–497.

    Article  CAS  PubMed  Google Scholar 

  2. Singh, P., Singh, S.S., Elster, J., and Mishra, A.K., Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nif H gene sequences, Protoplasma, 2013, vol. 250, pp. 751–764.

    Article  PubMed  Google Scholar 

  3. Fay, P., Oxygen relations of nitrogen fixation in cyanobacteria, Microbiol. Rev., 1992, vol. 56 pp. 340–373.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Singh, S.K., Singh, S.S., Pandey, V.D., and Mishra, A.K., Factors modulating alkaline phosphatase activity in the diazotrophic rice-field cyanobacterium, Anabaena oryzae, World J. Microb. Biotechnol., 2006, vol. 22, pp. 927–935.

    Article  CAS  Google Scholar 

  5. Hedley, M.J., Mortvedt, J.J., Bolan, N.S., and Syers, J.K., Phosphorus fertility management in agroecosystems, in Phosphorus in the Global Environment, Tiessen, H., Ed., 1995, pp. 59–92.

  6. Fardeau, J.C., Dynamics of phosphate in soil. An isotopic outlook, Fert. Res., 1996, vol. 45, pp. 91–100.

    Article  Google Scholar 

  7. Mengel, K., Agronomic measures for better utilization of soil and fertilizer phosphates Eur. J. Agron., 1997, vol. 7, pp. 221–233.

    Article  Google Scholar 

  8. Schweitzer, B. and Simon, M., Growth limitation of planktonic bacteria in a large mesotrophic lake, Microb. Ecol., 1995, vol. 30, pp. 89–104.

    Article  CAS  PubMed  Google Scholar 

  9. Tyrrell, T., The relative influences of nitrogen and phosphorus on oceanic primary production, Nature, 1999, vol. 400, pp. 525–531.

    Article  CAS  Google Scholar 

  10. Karl, D.M. and Tien, G., Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean, Mar. Chem., 1997, vol. 56, pp. 77–96.

    Article  CAS  Google Scholar 

  11. Wu, J.-F., Sunda, W., Boyle, E.A., and Karl, D.M., Phosphate depletion in the western North Atlantic Ocean, Science, 2000, vol. 289, pp. 759–762.

    Article  CAS  PubMed  Google Scholar 

  12. Mills, M.M., Ridame, C., Davey, M., Roche, J.L., and Geider R.J., Iron and phosphorus colimit nitrogen fixation in the eastern tropical North Atlantic, Nature, 2004, vol. 429, pp. 292–294.

    Article  CAS  PubMed  Google Scholar 

  13. Ammerman, J.W., Hood, R.R., Case, D.A., and Cotner, J.B., Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography, EOS, 2003, vol. 84, pp. 165–170.

    Article  Google Scholar 

  14. Mather, R.L., Reynolds, S.E., Wolff, G.A., Williams, R.G., TorresValdes, S., Woodward, E.M.S., Landolfi, A., Pan, X., Sanders, R., and Achterberg, E.P., Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres, Nat. Geosci., 2008, vol. 1 pp. 439–443.

    Article  CAS  Google Scholar 

  15. Lomas, M.W., Burke, A.L., Lomas, D.A., Bell, D.W., Shen, C., Dyhrman, S.T., and Ammerman, J.W., Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP), Biogeosciences, 2010, vol. 7, pp. 695–710.

    Article  CAS  Google Scholar 

  16. Rodríguez, H. and Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion, Biotechnol. Adv., 1999, vol. 17, pp. 319–339.

    Article  PubMed  Google Scholar 

  17. Clark, L.L., Ingall, E.D., and Benner, R., Marine phosphorus is selectively remineralized, Nature, 1998, vol. 393, pp. 426–428.

    Article  CAS  Google Scholar 

  18. Kolowith, L.C., Ingall, E.D., and Benner, R., Composition and cycling of marine organic phosphorus, Limnol. Oceanogr., 2001, vol. 46, pp. 309–320.

    Article  CAS  Google Scholar 

  19. Makino, K., Shinagawa, H., Amemura, M., Kawamoto, T., Yamada, M., and Nakata, A., Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins, J. Mol. Biol., 1989, vol. 210, pp. 551–559.

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, S., Ferjani, A., Suzuki, I., and Murata, N., The SphS–SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis, J. Biol. Chem., 2004, vol. 279, pp. 13234–13240.

    Article  CAS  PubMed  Google Scholar 

  21. Makino, K., Shinagawa, H., Amemura, M., and Nakata, A., Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli, J. Mol. Biol., 1986, vol. 192, pp. 549–556.

    Article  CAS  PubMed  Google Scholar 

  22. Shinagawa, H., Makino, K., Yamada, M., Amemura, M., Sato, T., and Nakata, A., Signal transduction in thephosphate regulon of Escherichia coli: dual function of PhoR as a protein kinase and protein phosphatase, in Phosphate in Microorganisms: Cellular and Molecular Biology, TorrianiGorini, A., et al., Eds., Washington: Am. Soc. Microbiol., 1994, pp. 285–289.

    Google Scholar 

  23. Makino, K., Amemura, M., Kim, S.K., Nakata, A., and Shinagawa, H., Mechanism of transcriptional activation of the phosphate regulon in Escherichia coli, in Phosphate in Microorganisms: Cellular and Molecular Biology, Torriani-Gorini, A., et al., Eds., Washington: Am. Soc. Microbiol., 1994, pp. 5–12.

  24. Vershinina, O.A. and Znamenskaya, L.V., The Pho regulons of bacteria, Microbiology (Moscow), 2002, vol. 71, pp. 497–511.

    Article  CAS  Google Scholar 

  25. Su, Z., Olman, V., and Xu, Y., Computational prediction of Pho regulons in cyanobacteria, BMC Genomics, 2007, vol. 8, pp. 156–167.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Aiba, H., Nagaya, M., and Mizuno T., Sensor and regulator proteins from the cyanobacterium Synechococcus sp. PCC7942 that belong to the bacterial signal transduction protein families: implication in the adaptive response to phosphate limitation, Mol. Microbiol., 1993, vol. 8, pp. 81–91.

    Article  CAS  PubMed  Google Scholar 

  27. Hirani, T.A., Suzuki, I., Murata, N., Hayashi, H., and Eaton-Rye, J.J., Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphatelimiting conditions in Synechocystis sp. PCC 6803, Plant Mol. Biol., 2001, vol. 45, pp. 133–144.

    Article  CAS  PubMed  Google Scholar 

  28. Stock A.M., Robinson, V.L., and Goudreau, P.N., Two-component signal transduction, Annu. Rev. Biochem., 2000, Vol. 69 pp. 183–215.

    Article  CAS  PubMed  Google Scholar 

  29. Mascher, T., Helmann, J.D., and Unden, G., Stimulus perception in bacterial signaltransducing histidine kinases, Microbiol. Mol. Biol. Rev., 2006, vol. 70 (4): 910–938.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Burut-Archanai, S., Incharoensakdi, A., and Eaton-Rye, J.J. The extended N-terminal region of SphS is required for detection of external phosphate levels in Synechocystis sp. PCC 6803, Biochem. Biophys. Res. Commun., 2009, vol. 378, pp. 383–388.

    Article  CAS  PubMed  Google Scholar 

  31. Toll-Riera, M., Rado-Trilla, N., Martys, F., and Alba, M.M., Role of low-complexity sequences in the formation of novel protein coding sequences, Mol. Biol. Evol., 2012, vol. 29, pp. 883–886.

    Article  CAS  PubMed  Google Scholar 

  32. Kimura, S., Makino, K., Shinagawa, H., Amemura, M., and Nakata, A., Regulation of the phosphate regulon of Escherichia coli: characterization of the promoter of the pstS gene, Mol. Gen. Genet., 1989, vol. 215, pp. 374–380.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, B.L. and Zhulin, I.B., PAS domains: internal sensors of oxygen, redox potential, and light, MMBR, 1999, vol. 63, pp. 479–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hefti, M.H., Françoijs, K.J., de Vries, S.C., Dixon, R., and Vervoort, J., The PAS fold. A redefinition of the PAS domain based upon structural prediction, Eur. J. Biochem., 2004, vol. 271, pp. 1198–208.

    Article  CAS  PubMed  Google Scholar 

  35. Dutta, R., Qin, L., and Inouye, M., Histidine kinases: diversity of domain organization, Mol. Microbiol., 1999, vol. 34, pp. 633–640.

    Article  CAS  PubMed  Google Scholar 

  36. Okamura, H., Hanaoka, S., Nagadoi, A., Makino, K., and Nishimura, Y., Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box, J. Mol. Biol., 2000, vol. 295, no. 5, pp. 1225–1230.

    Article  CAS  PubMed  Google Scholar 

  37. Juntarajumnong, W., Hirani, T.A. Simpson, J.M., Incharoensakdi, A., and Eaton-Rye, J.J., Phosphate sensing in Synechocystis sp. PCC 6803: SphU and the SphS–SphR two-component regulatory system, Arch. Microbiol., 2007, vol. 188, pp. 389–402.

    Article  CAS  PubMed  Google Scholar 

  38. Pitt, F.D., Mazard, S., Humphreys, L., and Scanlan, D.J., Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium, J. Bacteriol., 2010, vol. 192, pp. 3512–3523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nagaya, M., Aiba, H., and Mizuno, T., The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Synechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter, J. Bacteriol., 1994, vol. 176, pp. 2210–2215.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Qi, Y., Kobayashi, Y., and Hulett, F.M., The pst operon of Bacillus subtilis has a phosphateregulated promoter and is involved in phosphatentransport but not in regulation of the Pho regulon, J. Bacteriol., 1997, vol. 179, pp. 2534–2539.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Tetu, S.G., Brahamsha, B., Johnson, D.A., Tai, V., Phillippy, K., Palenik, B., and Paulsen, I.T., Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102, ISME J., 2009, vol. 3, pp. 835–849.

    Article  CAS  PubMed  Google Scholar 

  42. Ostrowski, M., Mazard, S., Tetu, S.G., Phillippy, K., Johnson, A., Palenik, B., Paulsen, I.T., and Scanlan, D.J., PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus, The ISME J., 2010, vol. 4, pp. 908–921.

    Article  CAS  Google Scholar 

  43. Dyhrman, S.T., Chappell, P.D., Haley, S.T., Moffett, J.W., Orchard, E.D., Waterbury, J., and Webb, E.A., Phosphonate utilization by the globally important marine diazotroph Trichodesmium, Nature, 2006, vol. 439, pp. 68–71.

    Article  CAS  PubMed  Google Scholar 

  44. Singh S.K. and Tiwari D.N., Control of alkaline phosphatase activity in Anabaena oryzae Fritsch, J. Plant Physiol., 2000, vol. 157, pp. 467–472.

    Article  CAS  Google Scholar 

  45. Subramanian, G., Sekar, S., and Sampoornam, S., Biodegradation and utilization of organophosphorus pesticides by cyanobacteria, Int. Biodeter. Biodegr., 1994, vol. 33, pp. 2129–143.

    Google Scholar 

  46. Megharaj, M., Madhavi, D.R., Sreeinvasaulu, C., Umamaheswari, A., and Venkateswarlu, K., Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria, Bull. Environ. Contam. Toxicol., 1994, vol. 53, pp. 292–297.

    Article  CAS  PubMed  Google Scholar 

  47. Rao, N.N. and Torriani, A., Molecular aspects of phosphate transport in Escherichia coli, Mol. Microbiol., 1990, vol. 4, pp. 1083–1090.

    Article  PubMed  Google Scholar 

  48. Higgins, C.F., ABC transporters: physiology, structure and mechanism?an overview, Res. Microbiol., 2001, vol. 152, pp. 205–210.

    Article  CAS  PubMed  Google Scholar 

  49. Ray, J.M., Bhaya, D., Block, M.A., and Grossman, A.R., Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942, J. Bacteriol., 1991, vol. 173, pp. 4297–4309.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Wagner, K., Masepoh, B., and Pistorius, E.K., The cyanobacterium Synechococcus sp. strain PCC 7942 contains a second alkaline phosphatase encoded by phoV, Microbiology (UK), 1995, vol 141, pp. 3049–3058.

    Article  CAS  PubMed  Google Scholar 

  51. Zaheer, R., Morton, R., Proudfoot, M., Yakunin, A., and Finan, T.M., Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria, Environ. Microbiol., 2009, vol. 11, pp. 1572–1587.

    Article  CAS  PubMed  Google Scholar 

  52. Eder, S., Shi, L., Jensen, K., Yamane, K., and Hulett, F.M., A Bacillus subtilis secreted phosphodiesterase / alkaline phosphatase is the product of a Pho regulon gene, phoD, Microbiology (UK), 1996, vol. 142, pp. 2041–2047.

    CAS  Google Scholar 

  53. Luo, H., Bennera, R., Long, R.A., and Hu, J., Subcellular localization of marine bacterial alkaline phosphatase, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 21219–21223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sebastian, M. and Ammerman, J.W., The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA, The ISME J., 2009, vol. 3, pp. 563–572.

    Article  CAS  Google Scholar 

  55. Angelini, S., Moreno, R., Gouffi, K., Santini, C., Yamagishi, A., Berenguer, J., and Wu, L., Export of Thermus thermophilus alkaline phosphatase via the twinarginine translocation pathway in Escherichia coli, FEBS Lett., 2001, vol. 506, pp. 103–107.

    Article  CAS  PubMed  Google Scholar 

  56. Kathuria, S. and Martiny, A.C., Prevalence of a calciumbased alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria, Env. Microbiol., 2010, vol. 13, pp. 74–83.

    Article  Google Scholar 

  57. Kageyama, H., Tripathi, K,. Rai, A.K, Cha-um, S., Waditee-Sirisattha. R., and Takabe, T., An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium, Appl Environ. Microbiol., 2011, vol. 77, pp. 5178–5183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Singh, B.K., Organophosphorusdegrading bacteria: ecology and industrial applications, Nature Rev. Microbiol., 2009, vol.7, pp. 156–164.

    Article  CAS  Google Scholar 

  59. Thengodkar, R.R.M. and Sivakami, S., Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis, Biodegradation, 2010, vol. 21, pp. 637–644.

    Article  CAS  PubMed  Google Scholar 

  60. Villarreal-Chiu, J.F., Quinn, J.P., and McGrath, J.W., The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment, Front Microbiol., 2012, vol. 26, pp. 3:19.

    Google Scholar 

  61. Kononova, S.V. and Nesmeyanova M.A., Phosphonates and their degradation by microorganisms, Biochemistry (Moscow), 2002, vol. 67 pp. 184–195.

    Article  CAS  Google Scholar 

  62. Nowack, B., Environmental chemistry of phosphonates, Water Res., 2003, vol. 37, pp. 2533–2546.

    Article  CAS  PubMed  Google Scholar 

  63. Gomez-Garcia, M.R., Davison, M., Blain-Hartnung, M., Grossman, A. R., and Bhaya, D., Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats, The ISME J., 2011, vol. 5, pp. 141–149.

    Article  CAS  Google Scholar 

  64. Ternan, N.G., McGrath, J.W., McMul-lan, G., and Quinn, J.P. Organophosphonates: occurrence, synthesis and biodegradation by microorganisms, World J. Microbiol. Biotechnol., 1998, vol.14, pp. 635–647.

    Article  CAS  Google Scholar 

  65. Adams, M.M., Gomez-Garcia, M.R., Grossman, A.R., and Bhaya. D., Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats, J. Bacteriol., 2008, vol. 190, pp. 8171–8184.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jiang, W., Metcalf, W.W., Lee, K., and Wanner, B.L., Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2, J. Bacteriol., 1995, vol. 177, pp. 6411–6421.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Mishra.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, B., Singh, S., Kaushik, M.S. et al. Regulation of organophosphate metabolism in cyanobacteria. A review. Microbiology 84, 291–302 (2015). https://doi.org/10.1134/S0026261715030200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715030200

Keywords

Navigation