Skip to main content
Log in

Microbial oxidation of methane in the sediments of central and southern Baikal

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methane levels and methane oxidation rates were determined in the sediments from geochemically different areas in the central and southern parts of the low-mineral Lake Baikal. At different stations, integral rates of methane oxidation varied from 60 to 6592 μmol m−2 day−1. Typically, two distinct peaks of methane oxidation rates were revealed, located in the oxic and anoxic sediment horizons. In most cases, the rates of aerobic and anaerobic methane oxidation were comparable. Due to low sulfate concentration in pore water (<0.15 mM), a mechanism different from reverse methanogenesis, which involves methanotrophic archaea and sulfate-reducing bacteria and is common in marine sediments, was probably responsible for this process in Lake Baikal reduced sediments. The possible alternative mechanisms and electron acceptors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klerkx, J., Zemskaya, T.I., Matveeva, T.V., Khlystov, O.M., Namsaraev, B.B., Dagurova, O.P., Golobokova, L.P., Vorob’eva, S.S., Pogodaeva, T.P., Granin, N.G., Kalmychkov, G.V., Ponomarchuk, V.A., Shoji, H., Mazurenko, L., Kaulio, V.V., Solov’ev, V.A., and Grachev, M.A., Methane hydrates in deep bottom sediments of Lake Baikal, Doklady Earth Sci., 2003, vol. 393, pp. 1342–1346.

    Google Scholar 

  2. Kalmychkov, G.V., Egorov, A.V., Kuz’min, M.I., and Khlystov O.M., Genetic types of methane from Lake Baikal, Doklady Earth Sci., 2006, vol., 411, no. 5, pp. 1462–1465.

    Article  Google Scholar 

  3. Dagurova, O.P., Namsaraev, B.B., Kozyreva, L.P., Zemskaya, T.I., and Dulov, L.E., Bacterial processes of the methane cycle in bottom sediments of Lake Baikal, Microbiology (Moscow), 2004, vol. 73, no. 2, pp. 202–210.

    Article  CAS  Google Scholar 

  4. Zemskaya, T.I., Pogodaeva, T., Shubenkova, O.V., Chernitsina, S.M., Dagurova, O.P., Buryukhaev, S., Namsaraev, B.B., Khlystov, O.M., Egorov, A.M., Krylov, A.A., and Kalmychkov, G.V., Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3, Geo-Mar. Lett., 2010, vol. 30, pp. 411–425.

    Article  CAS  Google Scholar 

  5. Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V., Shubenkova, O.V., Pogodaeva, T.V., Zemskaya, T.I., Ravin, N.V., and Skryabin, K.G., Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal, FEMS Microbiol. Ecol., 2012, vol. 79, pp. 348–358.

    Article  CAS  PubMed  Google Scholar 

  6. Lomakina, A.V., Pogodaeva, T.V., Morozov, I.V., and Zemskaya, T.I., Microbial communities of the discharge zone of oil- and gas-bearing fluids in low-mineral Lake Baikal, Microbiology (Moscow), 2014, vol. 83, pp. 278–287.

    Article  CAS  Google Scholar 

  7. Smemo, K.A. and Yavitt, J.B., Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems, Biogeosciences, 2011, vol. 8, pp. 779–793.

    Article  CAS  Google Scholar 

  8. Crowe, S.A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M.A., Kessler, J.D., Reeburgh, W.S., Roberts, J.A., González, L., Douglas Haffner, G., Mucci, A., Sundby, B., and Fowle, D.A., The methane cecle in ferruginous Lake Matano, Geobiology, 2011, vol. 9, no. 1, pp. 61–78.

    Article  CAS  PubMed  Google Scholar 

  9. Bol’shakov, A.M. and Egorov, A.V., Application of phase equilibrium degassing for gasometric research in water areas, Okeanologiya, 1987, vol. 37, no. 5, pp. 861–862.

    Google Scholar 

  10. Pimenov, N.V. and Bonch-Osmolovskaya, E.A., In situ activity studies in thermal environments, in Extremophiles. Methods in Microbiology, Rainey, F.A. and Oren, A., Eds., Elsevier, 2006, pp. 29–53.

    Google Scholar 

  11. Hachikubo, A., Khlystov, O., Krylov, A., Sakagami, H., Minami, H., Nunokawa, Y., Yamashita, S., Takahashi, N., Shoji, H., Nishio, Sh., Kida, M., Ebinuma, T., Kalmychkov, G., and Poort, J., Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal, Geo-Mar. Lett., 2010, vol. 30, nos. 3–4, pp. 321–329.

    Article  CAS  Google Scholar 

  12. Krylov, A.A., Khlystov, O.M., Hachikubo, A., Minami, H., Nunokawa, Y., Shoji, H., Zemskaya, T.I., Naudts, L., Pogodaeva, T.V., Kida, M., Kalmychkov, G.V., and Poort, J., Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin, Geo-Mar. Lett, 2010, vol. 30, pp. 427–437.

    Article  CAS  Google Scholar 

  13. Rudd, J.W.M., Methane oxidation in Lake Tanganyika, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 958–963.

    Article  CAS  Google Scholar 

  14. Kaiser, E.D., Schmid, M., Peeters, F., Kipfer, R., Dinkel, C., Diem, T., Schubert, C.J., and Wehrlil, B., What prevents outgassing of methane to the atmosphere in Lake Tanganyika?, J. Geophyps. Res., 2011, vol. 116, G02022, doi: 10.1029/2010JG001323

    Google Scholar 

  15. Pimenov, N.V., Zakharova, E.E., Bryukhanov, A.L., Korneeva, V.A., Kuznetsov, B.B., Tourova, T.P., Pogodaeva, T.V., Kalmychkov, G.V., and Zemskaya, T.I., Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal, Microbiology (Moscow), 2014, vol. 83, nos. 1–2, pp. 47–55.

    Article  CAS  Google Scholar 

  16. Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., Field and laboratory studies of methane oxidation in an anoxic marine sediments: evidence for a methanogen-sulfate reducer consortium, Global Geochem. Cycles, 1994, vol. 8, no. 4, pp. 451–463.

    Article  CAS  Google Scholar 

  17. Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O., A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 2000, vol. 407, no. 5, pp. 623–626.

    Article  CAS  PubMed  Google Scholar 

  18. Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B.B., Widdel, F., Peckmann, J., Pimenov, N.V., and Gulin, M.B., Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane, Science, 2002, vol. 297, pp. 1013–1015.

    Article  CAS  PubMed  Google Scholar 

  19. Zemskaya, T.I., Pogodaeva, T.V., Shubenkova, O.V., Chernitsina, S.M., Dagurova, O.P., Buryukhaev, S., Namsaraev, B.B., Khlystov, O.M., Egorov, A.M., Krylov, A.A., and Kalmychkov, G.V., Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3, Geo-Mar. Lett., 2010, vol. 30, pp. 411–425.

    Article  CAS  Google Scholar 

  20. Knittel, K. and Boetius, A., Anaerobic oxidation of methane: progress with a unknown process, Annu. Rev. Microbiol., vol. 63, pp. 311–334.

  21. Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Schouten, S., Sinninghe Damste, J.S., Op den Camp, H.J.M., Jetten, M.S.M., and Stours, M., A microbial consortium couples anaerobic methane oxidation to denitrification, Nature, 2006, vol. 440, pp. 918–921.

    Article  CAS  PubMed  Google Scholar 

  22. Ettwig, K.F., Shima, S., van de Pas-Schoonen, K.T., Kahnt, J., Medema, M.H., Op den Camp, H.J.M., Jetten, M.S.M., and Strous, M., Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea, Environ. Microbiol., 2008, vol. 10, pp. 3164–3173.

    Article  CAS  PubMed  Google Scholar 

  23. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, Ph., Yuan, Z., and Tyson, G.W., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage, Nature, 2013, vol. 500, pp. 567–570.

    Article  CAS  PubMed  Google Scholar 

  24. Ettwig, K.F., Butler, M.K., Paslier, D.L., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Bas, E., Dutilh, B.E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H.J.C.T., van Alen, T., Luesken, F., Wu, M.L., van de Pas-Schoonen, K.T., Op den Camp, H.J.M., Janssen-Megens, E.M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., and Strous, M., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 2010, vol. 464, pp. 543–548.

    Article  CAS  PubMed  Google Scholar 

  25. Ettwig, K.F., van Alen, T., van de Pas-Schoonen, K.T., Jetten, M.S.M., and Strous, M., Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum, Appl. Environ. Microbiol., 2009, vol. 75, pp. 3656–3662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Granina, L., Müller, B., and Wehrli, B., Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal, Chem. Geol., 2004, vol. 205, pp. 55–72.

    Article  CAS  Google Scholar 

  27. Beal, E.J., House, C.H., and Orphan, V.J., Manganese- and iron-dependent marine methane oxidation, Science, 2009, vol. 325, pp. 184–187.

    Article  CAS  PubMed  Google Scholar 

  28. Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A., and Kasten, S., An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments, Geobiology, 2014, vol. 12, pp. 172–181. doi: 10.1007/s00253-0135260-8. Epub 2013 Oct 17.

    Article  CAS  PubMed  Google Scholar 

  29. Zehnder, A.J.B. and Brock, T.D., Methane formation and methane oxidation by methanogenic bacteria, J. Bacteriol., 1979, vol. 137, pp. 420–432.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Moran, J.J., House, C.H., Freeman, K.H., and Ferry, J.G., Trace methane oxidation studied in several Euryarchaeota under diverse conditions, Archaea, 2005, vol. 1, pp. 303–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bertram, S., Blumenberg, M., Michaelis, W., Siegert, M., Krüger, M., and Seifert, R., Methanogenic capabilities of ANME-archaea deduced from 13C-labelling approaches, Environ. Microbiol., 2013, vol. 15, pp. 2384–2393. doi: 10.1111/1462-2920.12112.

    Article  CAS  PubMed  Google Scholar 

  32. Orcutt, B., Samarkin, V., Boetius, A., and Joye, S., On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seep of the Gulf of Mexico, Environ. Microbiol., 2008, vol. 10, no. 5, pp. 1108–1117.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pimenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenov, N.V., Kalmychkov, G.V., Veryasov, M.B. et al. Microbial oxidation of methane in the sediments of central and southern Baikal. Microbiology 83, 773–781 (2014). https://doi.org/10.1134/S0026261714060149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714060149

Keywords

Navigation