Skip to main content
Log in

Effect of mechanical grinding of Sphagnum on the structure and physiological state of bacterial communities

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The microcosm method was used to demonstrate an increase in bacterial numbers and drastic changes in the taxonomic structure of saprotrophic bacteria as a result of mechanical grinding of Sphagnum moss. Eccrisotrophic agrobacteria predominant in untreated moss were replaced by hydrolytic bacteria. Molecular biological approaches revealed such specific hydrolytic bacteria as Janthinobacterium agaricum and Streptomyces purpurascens among the dominant taxa. The application of kinetic technique for determination of the physiological state of bacteria in situ revealed higher functional diversity of hydrolytic bacteria in ground moss than in untreated samples. A considerable decrease of the C/N ratio in ground samples of living Sphagnum incubated using the microcosm technique indicated decomposition of this substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, O., The ecology of peat-forming processes: a review, Int. J. Coal Geol., 1989, vol. 12, pp. 89–103.

    Article  CAS  Google Scholar 

  2. Aerts, R., Verhoeven, J.T.A., and Whigham, D.F., Plant-mediated controls on nutrient cycling in temperate fens and bogs, Ecology, 1999, vol. 80, no. 7, pp. 2170–2181.

    Article  Google Scholar 

  3. Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures in Environmental Microbiology), Moscow: Nauka, 2003.

    Google Scholar 

  4. Thormann, M.N., Bayley, S.E., and Currah, R.S., Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands, Can. J. Microbiol., 2004, vol. 50, pp. 793–802.

    Article  CAS  PubMed  Google Scholar 

  5. Bambalov, N.N., Analysis of the hydrothermal hypothesis of organic matter decomposition, in Materialy IV nauchnoi shkoly “Bolota i biosfera” (Proc. 4th Sci. School “Bogs and Biosphere”), Tomsk: TsNTI, 2005, pp. 61–68.

    Google Scholar 

  6. Bambalov, N.N., Analysis of the biological factors of organic matter decomposition in bog environments, in Materialy V nauchnoi shkoly “Bolota i biosfera” (Proc. 5th Sci. School “Bogs and Biosphere”), Tomsk: TsNTI, 2006, pp. 18–27.

    Google Scholar 

  7. Funktsionirovanie mikrobnykh kompleksov verkhovykh torfyanikov — analiz prichin medlennoi destruktsii torfa (Functioning of Microbial Complexes of High-Moor Peatlands—Analysis of the Reasons for Slow Peat Decomposition), Moscow: Tov. Nauch. Izd. KMK, 2013.

  8. Ivanov, A.A., Yudina, N.V., and Lomovskii, O.I., Mechanochemical treatment of high-moor pit, Khim. Rastit. Syr’ya, 2004, no. 2, pp. 55–60.

    Google Scholar 

  9. Metody pochvennoi biokhimii i mikrobiologii (Methods in Soil Biochemistry and Microbiology), Moscow: Mos. Gos. Univ., 1991.

  10. Bergey’s Manual of Systematic Bacteriology, 8th ed., vols. 1–2, Holt, J.G., Ed., Baltimore-London: Williams and Wilkins, 1986.

  11. Dobrovol’skaya, T.G., Golovchenko, A.V., Lysak, L.V., and Zenova, G.M., Fizikokhimiya i biologiya torfa. Metody otsenki chislennosti i raznoobraziya bakterial’nykh i aktinomitsetnykh kompleksov torfyanykh pochv: uchebnoe posobie (Physical Chemistry and Biology of Peat. Methods for Assessment of Abndance and Diversity of Bacterial and Actinomycete Complexes of Peat Soils), Tomsk: TGPU, 2010.

    Google Scholar 

  12. Manucharova, N.A., Vlasenko, A.N., Tourova, T.P., Panteleeva, A.N., Stepanov, A.L., and Zenova, G.M., Thermophilic chitinolytic microorganisms of brown semidesert soil, Microbiology (Moscow), 2008, vol. 77, no. 5, pp. 610–615.

    Article  CAS  Google Scholar 

  13. Yakushev, A.V., Microbiological characterization of vermicomposts, Extended Abstract Cand. Sci. (Biol.) Dissertation, Moscow: Mos. Gos. Univ., 2009.

    Google Scholar 

  14. Dobrovol’skaya, T.G., Golovchenko, A.V., Kukharenko, O.S., Yakushev, A.V., Semenova, T.A., and Inisheva, L.I., The structure of the microbial communities in low-moor and high-moor peat bogs of Tomsk oblast, Euras. Soil Sci., 2012, vol. 45, no. 3, pp. 273–281.

    Article  Google Scholar 

  15. Kukharenko, O.S., Pavlova, N.S., Dobrovol’skaya, T.G., Golovchenko, A.V., Pochatkova, T.N., Zenova, G.M., and Zvyagintsev, D.G., The influence of aeration and temperature on the structure of bacterial complexes in high-moor peat soils, Euras. Soil Sci., 2010, vol. 43, no. 5, pp. 573–579.

    Article  Google Scholar 

  16. Kozhemyakov, A.P. and Tikhonovich, I.A., Agricultural application of leguminous inoculants and complex action biopreparations, Dokl. Ross. Akad. S.-kh. Nauk, 1998, no. 6, pp. 7–10.

    Google Scholar 

  17. Varma, A., Sherameti, I., Tripathi, S., Prasad, R., Das, A., Sharma, M., et al., The symbiotic fungus Piriformospora indica: review, in The Mycota, vol. 9. Fungal Associations, Hock, B., Ed., Springer; 2012, pp. 231–254.

    Chapter  Google Scholar 

  18. Murugesan, S., Manoharan, C., Vijayakumar, I.R., and Panneerselvam, A., Isolation and characterization of Agrobacterium rhizogenes from the root nodules of some leguminous plants, Int. J. Microbiol. Res, 2010, vol. 1, no. 3, pp. 92–96.

    Google Scholar 

  19. Sawada, H., Ieki, H., Ovaiz, H., and Matsumoto, S., Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes, Int. J. Syst. Bacteriol., 1993, vol. 43, no. 4, pp. 694–702.

    Article  CAS  PubMed  Google Scholar 

  20. Young, J.M., Kuykendal, L.D., Martinez-Romero, E., Kerr, A., and Sawada, H., A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis, Int. J. Syst. Bacteriol., 2001, vol. 51, pp. 89–103.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Dobrovol’skaya.

Additional information

Original Russian Text © T.G. Dobrovol’skaya, A.V. Golovchenko, A.V. Yakushev, N.A. Manucharova, E.N. Yurchenko, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 6, pp. 712–721.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrovol’skaya, T.G., Golovchenko, A.V., Yakushev, A.V. et al. Effect of mechanical grinding of Sphagnum on the structure and physiological state of bacterial communities. Microbiology 83, 820–828 (2014). https://doi.org/10.1134/S0026261714060058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714060058

Keywords

Navigation