Skip to main content
Log in

Promising microbial consortia for producing biofertilizers for rice fields

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Two cyanobacterial cultures from rice paddies of Kyzylorda Provence, Kazakhstan were isolated and characterized: Anabaena variabilis and Nostoc calsicola. Based on these cultures, new consortia of cyanobacteria, microalgae and Azotobacter were developed: ZOB-1 (Anabaena variabilis, Chlorella vulgaris, and Azotobacter sp.) and ZOB-2 (Nostoc calsicola, Chlorella vulgaris, and Azotobacter sp.). High growth rate and photosynthetic activity of microalgae were observed in these consortia. The active consortium ZOB-1 was selected, which improved germination and growth of rice plants. ZOB-1 was recommended as a biostimulator and biofertilizer for crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Franche, C., Lindström, K., and Elmerich, C., Nitrogen-fixing bacteria associated with leguminousandnon-leguminous plants, Plant Soil, 2009, vol. 321, pp. 35–59.

    Article  CAS  Google Scholar 

  2. Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., Joshi, M., and Natarajan, C., Rediscovering cyanobacteria as valuable sources of bioactive compounds (review), Appl. Biochem. Microbiol., 2010, vol. 46, no. 2, pp. 119–134.

    Article  CAS  Google Scholar 

  3. Pankratova, Je.M., Zyablykh, R.Ju., Kalinin, A.A., Kovin, A.L., and Trefilova, L.V., Construction of the microbial culture on the base of blue-green algae Nostoc paludosum Kiitz, Algologia, 2004, vol. 6, no. 4, pp. 445–458.

    Google Scholar 

  4. Bergman, B., Nostoc-Gunnera symbiosis, in Cyanobacteria in Symbiosis, Rai, A.N., Bergman, B., and Rasmussen, U., Eds., Dordrecht: Kluwer, 2002, pp. 207–232.

    Google Scholar 

  5. Pawlowski, K. and Sprent, J.I., Comparison between actinorhizal symbiosis and legume symbiosis, in Nitrogen-Fixing Actinorhizal Symbioses, Pawlowski, K. and Newton, W.E., Eds., Dordrecht: Springer, 2008, pp. 261–288.

    Chapter  Google Scholar 

  6. Acea, M.J., Diz, N., and Prieto-Fernández, A., Microbial populations in heated soils inoculated with cyanobacteria, Biol. Fertil. Soils, 2001, vol. 33, pp. 118–125.

    Article  Google Scholar 

  7. Sirenko, L.A., Sakevich, A.I., Osipov, L.F., Lukina, L.F., et al., Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v gidrobiologicheskoi praktike (Methods for Physiological and Biochemical Investigation of Algae in Hydrobiological Practice), Kiev: Nauka dumka, 1975.

    Google Scholar 

  8. Bergey’s Manual of Systematic Bacteriology, 8th ed., vols. 1–2, Holt, J.G., Ed., Baltimore-London: Williams and Wilkins, 1986.

    Google Scholar 

  9. Muzafarov, A.M., Ergashev, A.E., and Khalilova, S.Kh., Opredelitel’ sine-zelenykh vodoroslei Srednei Azii (Identification Guide of Blue-Green Algae of Central Asia), Tashkent: Fan, 1987.

    Google Scholar 

  10. Handbook of Symbiotic Cyanobacteria, Rai, A.N., Ed., Boca Raton, FL: CRC, 1990.

    Google Scholar 

  11. Zayadan, B.K., Akmukhanova, N.R., and Sadvakasova, A.K., Kollektsiya mikrovodoroslei i metody ikh kul’tivirovaniya (Microalga Collection and Methods of Their Cultivation), Almaty, 2013.

    Google Scholar 

  12. Jones, K.M. and Haselkorn, R., Newly identified cytochrome c oxidase operon in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 specifically induced in heterocysts, J. Bacteriol., 2002, pp. 2491–2499.

    Google Scholar 

  13. Schreiber U. Pulse-Amplitude (PAM) fluorometry and saturation pulse method, in Chlorophyll Fluorescence: A Signature of Photosynthesis, Papageorgiou, G. and Govindjee, Eds., Dordrecht: Springer, 2004, pp. 279- 319.

    Google Scholar 

  14. Matorin, D.N., Karateeva, A.V., Osipov, V.A., Lukashev, E.P., Seifullina, N.Kh., and Rubin, A.B., Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii, Nanotechnologies in Russia, 2010, vol. 5, nos. 5–6, pp. 320–327.

    Article  Google Scholar 

  15. Nurgasenov, T.N., Suleimenova, S.E., Karakal’chev, A.S., and Arystangulov, S.S., Sorovedenie, semenovodstvo i semenovedenie polevykh kul’tur (Sorology, Seed Farming, and Seed Maintenance of Field Plants), Almaty: Agrouniversitet, 2005.

    Google Scholar 

  16. Tsoglin, L.N. and Pronina, N.A., Biotekhnologiya mikrovodoroslei (Biotechnology of Microalgae), Moscow: Nauchnyi mir, 2012.

    Google Scholar 

  17. Lobakova, E.S., Dol’nikova, G.A., and Korzhenevskaya, T.G., Cyanobacterial-bacterial complexes in plant syncyanoses, Microbiology, 2001, vol. 70, no. 1, pp. 128–134.

    Article  Google Scholar 

  18. Richmond, A., Microalgal biotechnology at the turn of the millennium, J. Appl. Phycol., 2000, vol. 12, pp. 441–451.

    Article  Google Scholar 

  19. Pankratova, E.M., Trefilova, L.V., Zyablykh, R.Yu., and Ustyuzhanin, I.A., Cyanobacterium Nostoc paludosum Kütz as a basis for creation of agriculturally useful microbial associations by the example of bacteria of the genus Rhizobium, Microbiology (Moscow), 2008, vol. 77, no. 2, pp. 228–234.

    Article  CAS  Google Scholar 

  20. Elmerich, C. and Newton, W.E., Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, Springer, 2007.

    Book  Google Scholar 

  21. Matorin, D.N. and Rubin, A.B., Fluorestsentsii khlorofilla vysshikh rastenii i vodoroslei (Chlorophyll Fluorescence in Higher Plants and Algae), Izhevsk: IKIRKhD, 2012.

    Google Scholar 

  22. Antal, T.K., Matorin, D.N., Ilyash, L.V., Volgusheva, A.A., Osipov, V.A., Konyuhov, I.V., Krendeleva, T.E., and Rubin A.B., Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer, Photosynth. Res., 2009, vol. 102, pp. 67–76.

    Article  CAS  PubMed  Google Scholar 

  23. Kozhevin, P.A. Introduction of microorganisms: from biotechnology to ecology and back again, in Biotekhnologiya: sostoyanie i perspektivy razvitiya (Biotechnology: State and Prospects, Proc. 1st Int. Congr.), Moscow: PIK Maksima, 2002, p. 263.

    Google Scholar 

  24. Hartem, M.A., Problems and prospects of cyanobacterial biofertilizers for rice cultivation, J. Plant Physiol., 2001, vol. 111, pp. 206–211.

    Article  Google Scholar 

  25. Belnap, J., Nitrogen fixation in biological soil crusts from southeast Utah, USA, Biol. Fertil. Soil, 2004, vol. 35, no. 2, pp. 128–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Zayadan.

Additional information

Original Russian Text © B.K. Zayadan, D.N. Matorin, G.B. Baimakhanova, K. Bolathan, G.D. Oraz, A.K. Sadanov, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 4, pp. 467–474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayadan, B.K., Matorin, D.N., Baimakhanova, G.B. et al. Promising microbial consortia for producing biofertilizers for rice fields. Microbiology 83, 391–397 (2014). https://doi.org/10.1134/S0026261714040171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714040171

Keywords

Navigation