Skip to main content
Log in

Effect of NAD+-dependent formate dehydrogenase on anaerobic respiration of Shewanella oneidensis MR-1

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

An expression plasmid was constructed in order to carry out heterologous expression of the gene of the NAD+-dependent formate dehydrogenase (FDH) from methylotrophic bacterium Moraxella sp. in the cells of Shewanella oneidensis MR-1 under aerobic and anaerobic conditions. In both modes of cell cultivation, recombinant FDH activity was revealed in the cell lysate of the transformants. In the medium with lać tate as a carbon source, the rate of anaerobic respiration determined as the rate of conversion of fumarate (the electron acceptor) to succinate was higher in the transformant with recombinant FDH. Anaerobic cultivation of the FDH-containing transformant of S. oneidensis MR-1 in a microbial fuel cell (MFC) revealed increased current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, C., Gorby, Y.A., Zachara, J.M., Fredrickson, J.K., and Brown, C.F., Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria, Biotechnol. Bioeng., 2002, vol. 80, no. 6, pp. 637–649.

    Article  PubMed  CAS  Google Scholar 

  2. Myers, C.R. and Myers, J.M., Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrifaciens MR-1, J. Bacteriol., 1992, vol. 174, pp. 3429–3438.

    PubMed  CAS  Google Scholar 

  3. Debabov, V.G., Electricity from microorganisms, Microbiology, 2008, vol. 77, no. 2, pp. 123–131.

    Article  CAS  Google Scholar 

  4. Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., Clayton, R.A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R.T., Dodson, R.J., Durkin, A.S., Haft, D.H., Kolonay, J.F., Madupu, R., Peterson, J.D., Umayam, L.A., White, O., Wolf, A.M., Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee, C., Mueller, J., Khouri, H., Gill, J., Utterback, T.R., McDonald, L.A., Feldblyum, T.V., Smith, H.O., Venter, J.C., Nealson, K.H., and Fraser, C.M., Genome sequence of the dissimilatory metal ion-reducing bacterium shewanella oneidensis, Nature Biotechnol., 2002, vol. 20, pp. 1118–1123.

    Article  CAS  Google Scholar 

  5. Shi, L., Lin, J.-T., Markillie, L.M., Squier, C., and Hooker, B.S., Overexpression of multi-heme C-type cytochromes, BioTechniques, 2005, vol. 38, no. 2, pp. 297–299.

    Article  PubMed  CAS  Google Scholar 

  6. Myers, C.R. and Myers, J.M., Replication of plasmids with the p15A origin in Shewanella putrefaciens MR-1, Lett. Appl. Microbiol., 1997, vol. 24, no. 3, pp. 221–225.

    Article  PubMed  CAS  Google Scholar 

  7. Mordkovich, N.N., Manuvera, V.A., Veiko, V.P., and Debabov, V.G., Uridine phosphorylase from Shewanella oneidensis MR-1: heterological expression, regulation, transcription, and properties, Appl. Biochem. Microbiol., 2012, vol. 48, no. 9, pp. 716–722.

    Article  CAS  Google Scholar 

  8. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  9. Tang, Y., Meadows, A., Kirby, J., and Keasling, J., Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling, J. Bacteriol., 2007, vol. 189, no. 3, pp. 894–901.

    Article  PubMed  CAS  Google Scholar 

  10. Veiko, V.P., Ratmanova, K.I., Osipov, A.S., Bulenkov, M.T., and Pugachev, V.V., Directed introduction of amino groups at the internucleotide phosphate group for the solid-state synthesis of oligodeoxyribonucleotides, Bioorg. Khim., 1991, vol. 17, no. 5, pp. 685–689.

    PubMed  CAS  Google Scholar 

  11. Shabalin, I.G., Filippova, E.V., Polyakov, K.M., Sadykhov, E.G., Safonova, T.N., Tikhonova, T.V., Tishkov, V.I., and Popov, V.O., Structures of the apo and holo forms of formate dehydrogenase from the bacterium Moraxella sp. C-1: towards understanding the mechanism of the closure of the interdomain cleft, Acta Crystallogr. D Biol. Crystallogr., 2009, vol. 65, no. 12, p. 1315.

    Article  PubMed  CAS  Google Scholar 

  12. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities protein utilizing the principle of protein dye binding, Anal. Biochem., 1976, vol. 2, pp. 246–254.

    Google Scholar 

  13. Il’in, V.K., Smirnov, I.A., Soldatov, P.E., Korshunov, D.V., Tyurin-Kuz’min, A.Yu., Starkova, L.V., Chumakov, P.E., Emel’yanova, L.K., Novikova, L.M., Debabov, V.G., and Voeikova, T.A., Microbial fuel cells as alternative eleć tric power sources, Kosm. Biol. Aviakosm. Med., 2012, vol. 46, no. 1, pp. 62–67.

    Google Scholar 

  14. Serres, M.H. and Riley, M., Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments, J. Bacteriol., 2006, vol. 188, no. 13, pp. 4601–4609.

    Article  PubMed  CAS  Google Scholar 

  15. Pinchuk, G.E., Geydebrekht, O.V., Hill, E.A., Reed, J.L., Konopka, A.E., Beliaev, A.S., and Fredrickson, J.K., Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation and fumarate respiration conditions, Appl. Environ. Microbiol., 2011, vol. 77, no. 23, pp. 8234–8240.

    Article  PubMed  CAS  Google Scholar 

  16. Cordova, C.D., Schicklberger, M.F.R., Yu, Y., and Spormann, A.M., Partial functional replacement of CymA by SirCD in Shewanella oneidensis MR-1, J. Bacteriol., 2011, vol. 193, no. 9, pp. 2312–2321.

    Article  PubMed  CAS  Google Scholar 

  17. McMillan, D.G.G., Maritt, S.J., Butt, J.N., and Jeuken, L.J.C., Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA, J. Biol. Chem., 2012, vol. 287, no. 17, pp. 14215–14225.

    Article  PubMed  CAS  Google Scholar 

  18. Berrios-Rivera, S.J., Bennett, G.N., and San Ka-Yui, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase, Metabolic Engineering, 2002, vol. 4, pp. 217–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Mordkovich.

Additional information

Original Russian Text © N.N. Mordkovich, T.A. Voeikova, L.M. Novikova, I.A. Smirnov, V.K. Il’in, P.E. Soldatov, A.Yu. Tyurin-Kuz’min, T.S. Smolenskaya, V.P. Veiko, R.S. Shakulov, V.G. Debabov, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 4, pp. 395–401.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mordkovich, N.N., Voeikova, T.A., Novikova, L.M. et al. Effect of NAD+-dependent formate dehydrogenase on anaerobic respiration of Shewanella oneidensis MR-1. Microbiology 82, 404–409 (2013). https://doi.org/10.1134/S0026261713040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713040061

Keywords

Navigation