Skip to main content
Log in

Interaction of anoxygenic phototrophic bacteria Rhodopseudomonas sp. with kaolinite

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The interaction between freshwater nonsulfur purple bacteria Rhodopseudomonas sp. UZ-25p (Uzon caldera, Kamchatka, Russia) and two kaolinite samples (Zhuravlinyi Log, Chelyabinsk oblast) was investigated. Alterations in the chemical composition of the minerals and solutions, the parameters of bacterial growth, and crystal morphology and mineralogy of the kaolinite samples indicated the interactions between all components of the system (minerals, water, growth medium, and bacteria). Bacteria removed some elements from the medium, used them for growth, and promoted their transition into the mineral exchange pool. In the presence of bacteria, kaolinite cation exchange capacity increased and saturation of kaolinites with bases occured. Partial biodegradation of kaolinites, accompanied by ordering of the crystalline structure of their lamellar phase, was the main factor responsible for the increase in cation exchange capacity. For the first time anoxygenic phototrophic bacteria were found to degrade kaolinite with formation of gibbsite. The theoretical and applied significance of the experimental results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naimark, E.B., Kompantseva, E.I., and Komova, A.V., Interaction between anoxygenic phototrophic bacteria of the genus Rhodovulum and volcanic ash, Microbiology, 2009, vol. 78, no. 6, pp. 747–756.

    Article  CAS  Google Scholar 

  2. Kompantseva, E.I., Naimark, E.B., Komova, A.V., and Nikitina, N.S., Interaction of the haloalkaliphilic purple bacteria Rhodovulum steppense with aluminosilicate minerals, Microbiology, 2011, vol. 80, no. 5, pp. 650–656.

    Article  CAS  Google Scholar 

  3. Naimark, E.B., Eroshchev-Shak, V.A., Chizhikova, N.P., and Kompantseva, E.I., Interaction of clay minerals with microorganisms: Review of experimental data, Zhurn.Obshchei Biol., 2009, vol. 70, no. 2, pp. 155–167.

    CAS  Google Scholar 

  4. Eroshchev-Shak, V.A., Zolotarev, B.P, Naimark, E.B., and Kompantseva, E.I., Post-eruptive process and products of volcanic rock alteration (transformation and synthesis of secondary products), J. Volcanol. Seismol., 2010, vol. 4, no. 6, pp. 385–395.

    Article  Google Scholar 

  5. Meison, B., Principles of Geochemistry, [Russ. transl. Moscow: Nedra, 1971].

    Google Scholar 

  6. Methodical recommendations for the application of Classification of deposit stock and predicted resources of solid minerals (kaolins), Suppl. 20 to the Ministry of Natural Resource of Russia directive no. 37-p. of June 5 2007.

  7. Lowry, O.H., Rosebrough, H.J., Farr, A.L., and Randal, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

  8. Molodtsov, V.A. and Ignatova, V.P., Determination of the composition of exchangeable bases in saline soils, Pochvovedenie, 1975, no. 6, pp. 123–127.

    Google Scholar 

  9. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Manual on Chemical Analysis of Soils), Moscow: Mos. Gos. Univ., 1970.

    Google Scholar 

  10. Vorob’eva, L.A., Khimicheskii analiz pochv (Chemical Analysis of Soils), Moscow: Mos. Gos. Univ., 1998.

    Google Scholar 

  11. Zvyagin, B.B., Elektronografiya i strukturnaya kristallografiya glinistykh mineralov, (Electronography and Structural Crystallography of Clay Minerals), Moscow: Nauka, 1964.

    Google Scholar 

  12. Zhukhlistov, A.P., Electron diffraction study of the structural features of kaolinites, Crystallography Rep., 2010, vol. 55, no. 5, pp. 743–747.

    Article  CAS  Google Scholar 

  13. Plançon A., Giese R.F., Snyder R., Drits V.A., and Bookin A.S., Stacking faults in kaolin-group minerals: Defect structures of kaolinite, Clays Clay Miner., 1989, vol. 37, no. 3, pp. 203–210.

    Article  Google Scholar 

  14. Andreev, P.I. and Kirikilitsa, S.I., Mikrobiologicheskoe obogashchenie boksitov (Microbiological Enrichment of Bauxites), Kiev: Nauk. Dumka, 1986.

    Google Scholar 

  15. Arkad’eva, Z.A., Bezborodov, A.M., and Blokhina, I.N., Promyshlennaya mikrobiologiya (Industrial Microbiology), Moscow: Vyssh. Shk., 1989.

    Google Scholar 

  16. Yakhontova, L.K., Grudev, A.P., and Zuev, V.V., Investigation of the mineral substrate—microorganism system, Vestn. Mosk. Univ., Ser. 4., 1994, no. 5, pp. 80–92.

    Google Scholar 

  17. Dubovikov, O.A., Andreev, E.E., and Nikolaeva, N.V., Microbiological conditioning of bauxites, Obogashchenie rud, 2011, no. 5, pp. 19–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kompantseva.

Additional information

Original Russian Text © E.I. Kompantseva, E.B. Naimark, N.M. Boeva, A.P. Zhukhlistov, V.M. Novikov, N.S. Nikitina, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 3, pp. 323–334.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kompantseva, E.I., Naimark, E.B., Boeva, N.M. et al. Interaction of anoxygenic phototrophic bacteria Rhodopseudomonas sp. with kaolinite. Microbiology 82, 316–326 (2013). https://doi.org/10.1134/S0026261713030077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713030077

Keywords

Navigation