Skip to main content
Log in

Capacity for nitrate respiration as a new aspect of metabolism of the filamentous sulfur bacteria of the genus Thiothrix

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Capacity of Thiothrix species (T. lacustris strains AS and BLT, T. caldifontis G1T, T. unzii A1T, and T. eikelboomii AR3T) for anaerobic respiration in the presence of nitrate was discovered. The dynamics of nitrate reduction to nitrite was studied and the coupling of this process to thiosulfate oxidation was shown. The investigated Thiothrix representatives performed anaerobic thiosulfate-dependent reduction of nitrate only to nitrite. The presence of the narG gene, encoding the α-subunit of respiratory nitrate reductase NarGHI, was revealed in the cells. The induction of this gene expression was shown for the T. lacustris strain AS under anaerobic conditions of growth. The activity of several enzymes involved in the conversion of reduced sulfur compounds was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fossing, H., Gallardo, V.A., Jorgensen, B.B., Huttel, M., Nielsen, L.P., Schulz, H., Canfield, D.E., Forster, S., Glud, R.N, Gundersen, J.K., Kuver, J., Ramsing, N.B., Teske, A., Thamdrup, B., and Ulloa, O., Concentration and Transport of Nitrate by the Mat-Forming Sulphur Bacterium Thioploca, Nature, 1995, vol. 374, pp. 713–715.

    Article  CAS  Google Scholar 

  2. McHatton, S.C., Barry, J.P., Jannasch, H.W., and Nelson, D.C., High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp., Appl. Environ. Microbiol., 1996, vol. 62, pp. 954–958.

    PubMed  CAS  Google Scholar 

  3. Armbruster, E.H., Improved Technique for Isolation and Identification of Sphaerotilus, Appl. Microbiol., 1969, vol. 17, pp. 320–321.

    PubMed  CAS  Google Scholar 

  4. Pfennig, N.D. and Lippert, K.D., Uber das Vitamin B12 Bedurfuis phototropher Schwefelbakterien, Arch. Mikrobiol., 1966, vol. 55, no. 1, pp. 245–256.

    Article  CAS  Google Scholar 

  5. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

  6. Hensen, D., Sperling, D., Trüper, H.G., Brune, D.C., and Dahl, C., Thiosulphate Oxidation in the Phototrophic Sulphur Bacterium Allochromatium vinosum, Mol. Microbiol., 2006, vol. 62, no. 3, pp. 794–810.

    Article  PubMed  CAS  Google Scholar 

  7. Petushkova, Yu.P. and Ivanovskii, R.N., Sulfite Oxidation by Thiocapsa roseopersicina, Mikrobiologiya, 1976, vol. 45, no. 4, pp. 592–597.

    CAS  Google Scholar 

  8. Peck, H.D. and Deacon, T.E., Studies of Adenosine-5′-Phosphosulfate-Reductase from Desulfovibrio desulfuricans and Thiobacillus denitrificans, J. Biochem., 1968, vol. 97, pp. 651–657.

    Google Scholar 

  9. Murillo, F.M., Gugliuzzo, T., Senco, J., Basu, P., and Stolz, J.F., A Heme-C-Containing Enzyme Complex That Exhibits Nitrate and Nitrite Reductase Activity from the Dissimilatory Iron-Reducing Bacterium Geobacter metallireducens, Arch. Microbiol., 1999, vol. 172, pp. 313–320.

    Article  CAS  Google Scholar 

  10. Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, V.Yu., Metody analiza prirodnykh vod (Methods for Analysis of Natural Waters), Moscow: Gosgeoltekhizdat, 1970.

    Google Scholar 

  11. Williams, W.J., Handbook of Anion Determination, Butterworths, 1979.

  12. Morris, H.E., Lacombe, R.F., and Lane, W.H., Quantitative Determination of Elemental Sulfur in Aromatic Hydrocarbons, Anal. Chem., 1948, vol. 20, pp. 1037–1039.

    Article  CAS  Google Scholar 

  13. Milner, G.L. and Miller, E.E., Determination of Nitrogen in Biological Material, Anal. Chem., 1948, vol. 20, p. 481.

    Article  Google Scholar 

  14. Smith, C.J., Nedwell, D.B., and Dong, L.F., Diversity and Abundance of Nitrate Reductase Genes (narG and napA), Nitrite Reductase Genes (nirS and nrfA), and Their Transcripts in Estuarine Sediments, Appl. Environ. Microbiol., 2007, vol. 73, no. 11, pp. 3612–3622.

    Article  PubMed  CAS  Google Scholar 

  15. Favre-Bonte, S., Joly, B., and Forestier, C., Consequences of Reduction of Klebsiella pneumonia Capsule Expression on Interactions of This Bacterium with Epithelial Cells, Infect. Immun., 1999, vol. 67, pp. 554–561.

    PubMed  CAS  Google Scholar 

  16. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Positions-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  17. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  18. Zumft, W.G., Cell Biology and Molecular Basis of Denitrification, Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 4, pp. 533–616.

    PubMed  CAS  Google Scholar 

  19. Gregory, L.G., Bond, P.L., Richardson, D.J., and Spiro, S., Characterization of a Nitrate-Respiring Bacterial Community Using the Nitrate Reductase Gene (narG) as a Functional Marker, Microbiology (UK), 2003, vol. 149, pp. 229–237.

    Article  CAS  Google Scholar 

  20. Palmer, K., Drake, H.L., and Horn, M.A., Genome-Derived Criteria for Assigning Environmental narG and nosZ Sequences to Operational Taxonomic Units of Nitrate Reducers, Appl. Environ. Microbiol., 2009, vol. 75, no. 15, pp. 5170–5174.

    Article  PubMed  CAS  Google Scholar 

  21. Larkin, J.M. and Shinabarger, D.L., Characterization of Thiothrix nivea, Int. J. Syst. Bacteriol., 1983, vol. 33, pp. 841–846.

    Article  Google Scholar 

  22. Odintsova, E.V., Wood, A.P., and Kelly, D.P., Chemolithoautotrophic Growth of Thiothrix ramosa, Arch. Microbiol., 1993, vol. 160, pp. 152–157.

    Article  CAS  Google Scholar 

  23. Rossetti, S., Blackall, L.L., Levantesi, C., Uccelletti, D., and Tandoi, V., Phylogenetic and Physiological Characterization of a Heterotrophic, Chemolithoautotrophic Thiothrix Strain Isolated from Activated Sludge, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  24. Unz, R.F. and Head, I.M., Genus I. Thiothrix Winogradsky 1888, 39AL, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Brenner, D.J. et al., Eds., New York: Springer, 2005, vol. 2, part B, pp. 131–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Dubinina or M. Yu. Grabovich.

Additional information

Original Russian Text © I.V. Trubitsyn, Zh.G. Andreevskikh, L.I. Yurevich, E.V. Belousova, M.N. Tutukina, A.Y. Merkel, G.A. Dubinina, M.Yu. Grabovich, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 1, pp. 19–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubitsyn, I.V., Andreevskikh, Z.G., Yurevich, L.I. et al. Capacity for nitrate respiration as a new aspect of metabolism of the filamentous sulfur bacteria of the genus Thiothrix . Microbiology 82, 15–21 (2013). https://doi.org/10.1134/S0026261713010153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713010153

Keywords

Navigation