Skip to main content
Log in

Involvement of alkylhydroxybenzenes, microbial autoregulators, in controlling the expression of stress regulons

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Alkylhydroxybenzenes (AHB) were found to control the activation of protective functions of microorganisms by inducing stress gene expression and increasing the frequency of the intrapopulation phase transitions which are responsible for the phenotypic variability of bacteria. We established the dependence of the regulatory effects of AHB on their structure (alkyl radical length) and concentration. A reversion assay using the tryptophan auxotrophic strain Bacillus subtilis trpA5 B 1733 indicated a relationship between the reversion frequency that was 40–120 times higher than the background value and phase transition’s intensity (with R → S transition rates up to 87% in contrast to 2% in the control experiment) induced by specific doses (5–100 mg/ml) of long-chain AHB such as C12-AHB acting for a short time (1 h) on vegetative (dividing or stationary-phase) B. subtilis cells. Using four test strains constructed from Escherichia coli C600 thi, thr, leuΔ(pro-lac) with transcriptional or translational vectors containing the hybrid umuD-lacZ or osmE-lacZ operons, we demonstrated that AHB perform the regulatory functions involved in controlling the SOS response gene expression and the general rpoS -dependent stationary-phase regulon, respectively. The dose-dependent effect of long-chain AHB (within the 50–100 µg/ml range) resulting in a two- to threefold increase in the stress gene expression, similar to the effect of natural stress factors such as UV irradiation and starvation, provides evidence that AHB function as alarmones (danger signals). From the fact that the osm E gene is upregulated by 35–70 µg/ml C12-AHB (its regulation level is increased up to twofold), it follows that C12-AHB controls rpoS-dependent regulation and the transition to the stationary phase. The effect of the short-chain homologue C7-AHB substantially differs from that of C12-AHB. C7-AHB in concentrations of 10–100µg/ml causes a significant decrease in osmE and umuD expression. A 30-min preincubation of cells with 10–100µg/ml C7-AHB protected them from UV irradiation, as was observed as a 3.6-fold decrease in umuD expression. Comparative analysis of the marker gene’s expression values in the strains with the transcriptional and translational vectors demonstrates that AHB nonspecifically activate stress regulons at the transcription level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hersh, M.N., Ponder, R.G., Hastings, P.J., and Rosenberg, S.M., Adaptive Mutation and Amplification in Escherichia coli: Two Pathways of Genome Adaptation Under Stress, Res. Microbiol., 2004, vol. 255, pp. 352–359.

    Article  Google Scholar 

  2. Woude van der, M.V. and Baumler, A.J., Phase and Antigenic Variation in Bacteria, Clin. Microbiol. Rev., 2004, vol. 17, no. 3, pp. 581–611.

    Article  PubMed  Google Scholar 

  3. Aersten, A. and Michirlis, C.W., Diversify or Die: Generation of Diversity in Response to Stress, Crit. Rev. Microbiol, 2005, vol. 31, pp. 69–78.

    Article  Google Scholar 

  4. Foster, P.L., Stress Induced Mutagenesis in Bacteria, Crit. Rev. Biochem. Mol. Biol., 2007, vol. 42, pp. 373–397.

    Article  CAS  PubMed  Google Scholar 

  5. Aburatani, S. and Horimoto, K., Elucidation of the Relationships Between LexA-Regulated Genes in the SOS Response, Genome Inform., 2005, vol. 16, no. 1, pp. 95–105.

    CAS  PubMed  Google Scholar 

  6. Saint-Ruf, C., Pesut, J., Sopta, M., and Matic, I., Causes and Consequences of DNA Repair Activity Modulation during Stationary, Crit. Rev. Biochem. Mol. Biol., 2007, vol. 42, pp. 259–270.

    Article  CAS  PubMed  Google Scholar 

  7. Huisman, G.W. and Kolter, R., Sensing Starvation: A Homoserine Lactone-Dependent Signaling Pathway in Escherichia coli, Science, 1994, vol. 265, pp. 537–539.

    Article  CAS  PubMed  Google Scholar 

  8. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic Functions of Extracellular Autoregulators of Microorganisms, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 446–456 [Microbiology (Engl. Transl.), vol. 75, no. 4, pp. 380–389].

    Google Scholar 

  9. Prozorov, A.A., Recombinational Rearrangements in Bacterial Genome and Bacterial Adaptation to the Environment, Mikrobiologiya, 2001, vol. 70, no. 5, pp. 581–594 [Microbiology (Engl. Transl.), vol. 70, no. 5, pp. 501–511].

    CAS  Google Scholar 

  10. Frenkiel-Krispin, D., Levin-Zaidman, S., Shimoni, E., Wolf, S.A., Wachtel, E.T., Arad, T., Finkel, S.E., Kolter, R., and Minsky, A., Regulated Phase Transition of Bacterial Chromatin: A Non-Enzymatic Pathway for Generic DNA Protection, The EMBO J., 2001, vol. 20, pp. 1184–1191.

    Article  CAS  Google Scholar 

  11. Doroshenko, E.V., Loiko, N.G., Il’inskaya, O.N., Kolpakov, A.N., Gornova, N.B., Klimanova, E.V., and El’-Registan, G.I., Characterization of Bacillus cereus Dissociants, Mikrobiologiya, 2001, vol. 70, no. 6, pp. 811–819 [Microbiology (Engl. Transl.), vol. 70, no. 6, pp. 698–705].

    CAS  Google Scholar 

  12. Il’inskaya, O.N., Kolpakov, A.I., Zelenikhin, P.V., Kruglova, Z.F., Choidash, B., Doroshenko, E.V., Mulyukin, A.L., and El’-Registan, G.I., The Effect of Anabiosis Autoinducers on the Bacterial Genome, Mikrobiologiya, 2002, vol. 71, no. 2, pp. 194–199 [Microbiology (Engl. Transl.), vol. 71, no. 2, pp. 164–168].

    Google Scholar 

  13. Mulyukin, A.L., Vakhrushev, M.A., Strazhevskaya, N.B., Shmyrina, A.S., Zhdanov, R.I., Suzina, N.E., Duda, V.I., Kozlova, A.N., and El’-Registan, G.I., Effect of Alkylhydroxybenzenes, Microbial Anabiosis Inducers, on the Structural Organization of Pseudomonas aurantiaca DNA and on the Induction of Phenotypic Dissociation, Mikrobiologiya, 2005, vol. 74, no. 2, pp. 128–135 [Microbiology (Engl. Transl.), vol. 74, no. 2, pp. 128–135].

    CAS  Google Scholar 

  14. Stepanenko, I.Yu., Mulyukin, A.L, Kozlova, A.N., Nikolaev, Yu.A., and El’-Registan, G.I., The Role of Alkylhydroxybenzenes in the Adaptation of Micrococcus luteus to Heat Shock, Mikrobiologiya, 2005, vol. 74, no. 1, pp. 26–33 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp. 20–26].

    Google Scholar 

  15. El-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Stepanenko, I.Yu., Kozlova, A.N., Martirosova, E.I., Shanenko, E.F., Strakhovskaya, M.G., and Revina, A.A., The Role of Low-Molecular-Weight Autoregulatory Factors (Alkylhydroxybenzenes) in Resistance to Radiation and Heat Shock, Adv. Space Res., 2005, vol. 36, pp. 1718–1728.

    Article  CAS  Google Scholar 

  16. Martirosova, E.I., Karpekina, T.A., and El’-Registan, G.I., Enzyme Modification by Natural Chemical Chaperons of Microorganisms, Mikrobiologiya, 2004, vol. 73, no. 5, pp. 708–715 [Microbiology (Engl. Transl.), vol. 73, no. 5, pp. 609–615].

    CAS  Google Scholar 

  17. Martirosova, E.I., Nikolaev, Yu.A., Shanenko, E.F., Krupyanskii, Yu.F., Loiko, N.G., and El’-Registan, G.I., Application of Hydroxybenzenes for Enhancing Enzyme Activity and Stability, Khim. Tekhnol., 2007, no. 6, pp. 250–256.

  18. Davydova, O.K., Deryabin, D.G., and El’-Registan, G.I., Long-Term Preservation of DNA in Aqueous Solutions in the Presence of the Chemical Analogues of Microbial Autoregulators, Mikrobiologiya, 2006, vol. 75, no. 5, pp. 662–669 [Microbiology (Engl. Transl.), vol. 75, no. 5, pp. 575–581].

    CAS  Google Scholar 

  19. Kozubek, A. and Tyman, H.P., Resorcinolic Lipids, the Natural Non-Isoprenoid Phenolic Amphiphiles and Their Biological Activity, Chem. Rev., 1999, vol. 99, no. 1, pp. 1–31.

    Article  CAS  PubMed  Google Scholar 

  20. Zolotukhina, M., Ovcharova, I., Eremina, S., Errais, L., and Mironov, A.S., Comparison of the Structure and Regulation of the udp Gene of Vibrio cholerae, Yersinia pseudotuberculisis, Salmonella typhimurium, and Escherichia coli, Res. Microbiol., 2003, vol. 154, no. 7, pp. 510–520.

    Article  CAS  PubMed  Google Scholar 

  21. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Laboratories, 1972.

    Google Scholar 

  22. Strazhevskaya, N.B., Mulyukin, A.L., Shmyrina, A.S., Kraus, A., Lorents, V., Zhdanov, R.I., and El’-Registan, G.I., Characteristics of Pseudomonas aurantiaca DNA Supramolecular Complexes at Various Developmental Stages, Mikrobiologiya, 2009, vol. 78, no. 1, pp. 59–67 [Microbiology (Engl. Transl.), vol. 78, no. 1, pp. 48–55].

    Google Scholar 

  23. Margulis, A.B., Il’inskaya, O.N., Kolpakov, A.I., and El’-Registan, G.I., Induction of SOS Response by Autoregulatory Factors of Microorganisms, Genetika, 2003, vol. 39, no. 9, pp. 1180–1184 [Russ. J. Genetics (Engl. Transl.), vol. 39, no. 9, pp. 993–996].

    CAS  PubMed  Google Scholar 

  24. Burke, P.V., Raitt, D.C., Allen, L.A., Kellogg, F.A., and Poyton, R.O., Effect of Oxygen Concentration on the Expression of Cytochrome c and Cytochrome c Oxidase Genes in Yeast, J. Biol. Chem., 1997, vol. 272, pp. 14705–14712.

    Article  CAS  PubMed  Google Scholar 

  25. Singh, U.S., Scannel, R.T., An, H.Y., Carter, B.J., and Hecht, S.M., DNA Cleavage by Di- and Tryhydroxyalkylbenzenes. Caracterization of Products and Role of O2, Cu(II) and Alkali, J. Am. Chem. Soc., 1995, vol. 117, pp. 12691–12699.

    Article  CAS  Google Scholar 

  26. Petrovskii, A.S., Deryabin, D.G., Loiko, N.G., Mikhailenko, N.A., Kobzeva, T.G., Kanaev, P.A., Nikolaev, Yu.A., Krupyanskii, Yu.F., Kozlova, A.N., and El’-Registan, G.I., Regulation of the Functional Activity of Lysozyme by Alkylhydroxybenzenes, Mikrobiologiya, 2009, vol. 78, no. 2, pp. 176–185 [Microbiology (Engl. Transl.), vol. 78, no. 2, pp. 144–153].

    Google Scholar 

  27. Friedberg, E.C., Walker, G.C., and Siede, W., DNA Repair and Mutagenesis, Washington, DC: ASM Press, 1995, p. 698.

    Google Scholar 

  28. Oktyabr’skii, O.N. and Smirnova, G.V., Redox Regulation of Cellular Functions, Biokhimiya, 2007, vol. 72, no. 2, pp. 158–174 [Biochemistry (Moscow) (Engl. Transl.), vol. 72, no. 2, pp. 132–145].

    Google Scholar 

  29. Claycamp, H.G., Ho, K.K., and De Rose, C., Tiol and Hydrogen Peroxide Modification of RecA Induction in UV-Irradiation Wild Type and Catalse Deficient Escherichia coli K12, Mutat. Res., 1990, vol. 235, pp. 101–109.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Loiko.

Additional information

Original Russian Text © N.A. Golod, N.G. Loiko, K.V. Lobanov, A.S. Mironov, T.A. Voieikova, V.F. Gal’chenko, Yu.A. Nikolaev, G.I. El’-Registan, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 6, pp. 731–741.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golod, N.A., Loiko, N.G., Lobanov, K.V. et al. Involvement of alkylhydroxybenzenes, microbial autoregulators, in controlling the expression of stress regulons. Microbiology 78, 678–688 (2009). https://doi.org/10.1134/S0026261709060034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709060034

Key words

Navigation