Skip to main content
Log in

Antioxidant systems of moderately thermophilic methanotrophs Methylocaldum szegediense and Methylococcus capsulatus

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Moderately thermophilic methanotrophs Methylocaldum szegediense O-12 and Methylococcus capsulatus Bath exhibit activities of antioxidant protection enzymes: glutathione peroxidase, superoxide dismutase, and cytochrome c peroxidase. The cells of methanotrophs grown at optimal temperatures (57 or 45°C, respectively) produce reactive oxygen species more actively than those grown at suboptimal temperatures, and exhibit higher activities of the membrane-associated cytochrome c peroxidase. Glutathione, glutathione peroxidase, and glucose-6-phosphate dehydrogenase levels in Md. szegediense O-12 increased in response to lowering of the cultivation temperature. By contrast, glutathione accumulation in cells of Mc. capsulatus Bath and the activity of glutathione peroxidase at a suboptimal temperature (29°C) were lower than at the optimal one. The role of the multilevel system of antioxidant protection in the adaptation of methanotrophs to temperature fluctuations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanson, R.S. and Hanson, T.E., Methanotrophic Bacteria, Microbiol. Rev., 1996, vol. 60, no. 2, pp. 439–471.

    CAS  PubMed  Google Scholar 

  2. Gal’chenko, V.F., Metanotrofnye bakterii (Methanotrophic Bacteria), Moscow: GEOS, 2001.

    Google Scholar 

  3. Trotsenko, Yu.A., Medvedkova, K.A., Khmelenina, V.N., and Eshinimaev, B.Ts., Thermophilic and Thermotolerant Aerobic Methanotrophs, Mikrobiologiya, 2009, vol. 78, no. 4, pp. 435–450 [Microbiology (Engl. Transl.), vol. 78, no. 4, pp. 387–401].

    Google Scholar 

  4. Knief, C. and Dunfield, P.F., Response and Adaptation of Different Methanotrophic Bacteria to Low Methane Mixing Ratios, Environ. Microbiol., 2005, vol. 7, no. 9, pp. 1307–1317.

    Article  CAS  PubMed  Google Scholar 

  5. Lin, J.L., Radajewski, S., Eshinimaev, B.T., Trotsenko, Y.A., McDonald, I.R., and Murrell, J.C., Molecular Diversity of Methanotrophs in Transbaikal Soda Lake Sediments and Identification of Potentially Active Populations by Stable Isotope Probing, Environ Microbiol., 2004, vol. 6, no. 10, pp. 1049–1060.

    Article  CAS  PubMed  Google Scholar 

  6. Smirnova, G.V., Zakirova, O.N., and Oktyabr’skii, O.N., The Role of Antioxidant Systems in the Response of Escherichia coli to Heat Shock, Mikrobiologiya, 2001, vol. 70, no. 5, pp. 595–601 [Microbiology (Engl. Transl.), vol. 70, no. 5, pp. 512–518].

    CAS  Google Scholar 

  7. Rogozhin, V.V., Peroksidaza kak komponent antioksidantnoi sistemy zhivykh organizmov (Peroxidase as a Component of the Antioxidant System in Living Organisms), St. Petersburg: GIORD, 2004.

    Google Scholar 

  8. Eshinimaev, B.Ts., Medvedkova, K.A., Khmelenina, V.N., Suzina, N.E., Osipov, G.A., Lysenko, A.M., and Trotsenko, Yu.A., New Thermophilic Methanotrophs of the Genus Methylocaldum, Mikrobiologiya, 2004, vol. 73, no. 4, pp. 530–539 [Microbiology (Engl. Transl.), vol. 73, no. 4, pp. 448–456].

    Google Scholar 

  9. Gaier, G., Elektronnaya gistokhimiya (Electronic Histochemistry), Moscow: Mir, 1974.

    Google Scholar 

  10. Kalyuzhnaya, M.G., Khmelenina, V.N., Kotelnikova, S., Holmquist, L., Pedersen, K., and Trotsenko, Y.A., Methylomonas scandinavica sp. nov., a New Methanotrophic Psychrotrophic Bacterium Isolated from Deep Igneous Rock Ground Water of Sweden, Syst. Appl. Microbiol., 1999, vol. 22, pp. 565–572.

    CAS  PubMed  Google Scholar 

  11. Sokolov, A.P. and Trotsenko, Y.A., Methane Consumption in (Hyper)Saline Habitats of Crimea (Ukraine), FEMS Microbiol. Ecol., 1995, vol. 18, pp. 299–304.

    Article  CAS  Google Scholar 

  12. Tietze, F., Enzymic Method for Quantitative Determination of Nanogram Amounts of Total and Oxidized Glutathione: Application to Mammalian Blood and Other Tissues, Anal. Biochem., 1968, vol. 27, pp. 502–522.

    Article  Google Scholar 

  13. Mizushima, S., Ishida, M., and Miura, T., Subfraction of Protoplast Membrane, Enzyme Localization in Bacillus megaterium, J. Biochem., 1966, vol. 60, pp. 256–261.

    CAS  PubMed  Google Scholar 

  14. Tkachenko, A.G. and Fedotova, M.V., Dependence of Protective Functions of Escherichia coli Polyamines on Strength of Stress Caused by Superoxide Radicals, Biokhimiya, 2007, vol. 72, no. 1, pp. 128–136 [Biochemistry (Moscow) (Engl. Transl.), vol. 72, no. 1, pp. 109–116].

    Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    CAS  PubMed  Google Scholar 

  16. Vara Prasad Reddy, L.S.S., Thangavel, A., Leela, V., Narayana Raju, K.V.S., and Tamilnadu, J., Effect of Dietary Supplementation of Tulasi (Ocimum sanctum) and Selenium on Lipid Peroxidation Levels and Growth Rate in Broiler Chickens, Veterinary & Animal Sciences, 2007, vol. 3, no. 3, pp. 144–149.

    Google Scholar 

  17. Bergmeer, H.U., Bergmeer, J., and Grabl, M., Methods of Enzymatic Analys, 3rd ed., Verlag Chemie GmbH, 1983, vol. 2, pp. 203–211.

    Google Scholar 

  18. Trinder, P., Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor, Ann. Clin. Biochem., 1976, vol. 6, p. 24.

    Google Scholar 

  19. Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Francis, R.T. and Becker, R.R., Specific Indication of Hemoproteins in Polyacrylamide Gels Using a Double-Staining Process, Anal. Chem., 1984, vol. 136, pp. 509–514.

    CAS  Google Scholar 

  21. Beauchamp, C. and Fridovich, I., Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    Article  CAS  PubMed  Google Scholar 

  22. Shacterle, G.R. and Pollack, R.L., A Simplified Method for Quantitative Assay of Small Amounts of Protein in Biological Material, Anal. Biochem., 1973, vol. 51, pp. 654–657.

    Article  Google Scholar 

  23. Balasubramanyam, M., Adaikala Koteswari, A., Sampath Kumar, R., Monickaraj S. Finny, Maheswari, J. Uma, and Mohan, V., Curcumin-Induced Inhibition of Cellular Reactive Oxygen Species Generation: Novel Therapeutic Implications, J. Biosci., 2003, vol. 28, no. 6, pp. 715–721.

    Article  CAS  PubMed  Google Scholar 

  24. Ward, N., Larsen, Q., Sakwa, J., Bruseth, L. et al. (and 38 Coauthors), Genomic Insights into Methanotrophy: the Complete Genome Sequence of Methylococcus capsulatus (Bath), PLoS Biology, 2004, vol. 2, pp. 1616–1628.

    CAS  Google Scholar 

  25. Clare, D.A., Rabinowitch, H.D., and Fridovich, I., Superoxide Dismutase and Chilling Injury in Chlorella ellipsoidea, Arch. Biochem. Biophys., 1984, vol. 231, no. 1, pp. 158–163.

    Article  CAS  PubMed  Google Scholar 

  26. Murrell, J.C., Gilbert, B., and McDonald, I.R., Molecular Biology and Regulation of Methane Monooxygenase, Arch. Microbiol., 2000, vol. 173, pp. 325–332.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, K. and Portis, A.R., Oxygen-Depedent H2O2 Production by Rubisco, FEBS Letters, 2004, vol. 571, pp. 124–128.

    Article  CAS  PubMed  Google Scholar 

  28. Medvedkova, K.A., Khmelenina, V.N., Baskunov, B.P., and Trotsenko, Yu.A., Synthesis of Melanin by a Moderately Thermophilic Methanotroph Methylocaldum szegediense Depends on Cultivation Temperature, Mikrobiologiya, 2008, vol. 77, no. 1, pp. 126–128 [Microbiology (Engl. Transl.), vol. 77, no. 1, pp. 112–114].

    CAS  Google Scholar 

  29. Choi, D.W., Semrau, J.D., Antholine, W.E., Hartsel, S.C., Anderson, R.C., Carey, J.N., Dreis, A.M., Kenseth, E.M., Renstrom, J.M., Scardino, L.L., Van Gorden, G.S., Volkert, A.A., Wingad, A.D., Yanzer, P.J., McEllistrem, M.T., de la Mora, A.M., and Dispirito, A.A., Oxidase, Superoxide Dismutase, and Hydrogen Peroxide Reductase Activities of Methanobactin from Types I and II Methanotrophs, J. Inorg. Biochem., 2008, vol. 102, no. 8, pp. 1571–1580.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Trotsenko.

Additional information

Original Russian Text © K.A. Medvedkova, V.N. Khmelenina, N.E. Suzina, Yu.A. Trotsenko, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 6, pp. 723–730.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedkova, K.A., Khmelenina, V.N., Suzina, N.E. et al. Antioxidant systems of moderately thermophilic methanotrophs Methylocaldum szegediense and Methylococcus capsulatus . Microbiology 78, 670–677 (2009). https://doi.org/10.1134/S0026261709060022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709060022

Key words

Navigation