Skip to main content
Log in

Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The physicochemical conditions, composition of microbial communities, and the rates of anaerobic processes in the deep sand horizons used as a repository for liquid radioactive wastes (LRW) at the Siberian Chemical Combine (Seversk, Tomsk oblast), were studied. Formation waters from the observation wells drilled into the horizons used for the radioactive waste disposal were found to be inhabited by microorganisms of different physiological groups, including aerobic organotrophs, anaerobic fermentative, denitrifying, sulfate-reducing, and methanogenic bacteria. The density of microbial population, as determined by cultural methods, was low and usually did not exceed 104 cells/ml. Enrichment cultures of microorganisms producing gases (hydrogen, methane, carbon dioxide, and hydrogen sulfide) and capable of participation in the precipitation of metal sulfides were obtained from the waters of the disposal site. The contemporary processes of sulfate reduction and methanogenesis were assayed; the rates of these terminal processes of organic matter destruction were found to be low. The denitrifying bacteria from the deep repository were capable of reducing the nitrates contained in the wastes, provided sources of energy and biogenic elements were available. Biosorption of radionuclides by the biomass of aerobic bacteria isolated from groundwater was demonstrated. The results obtained give us insight into the functional structure of the microbial community inhabiting the waters of repository horizons. This study indicates that the numbers and activity of microbial cells are low both inside and outside the zone of radioactive waste dispersion, in spite of the long period of waste discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rybal’chenko, A.I., Pimenov, M.K., Kostin, P.P., Balukova, V.D., Nosukhin, A.V., Mikerin, E.I., Egorov, N.N., Kaimin, E.P., Kosareva, I.M., and Kurochkin, V.M., Deep Injection Disposal of Liquid Radioactive Waste in Russia, Columbus, Richland, Battelle Press, 1998.

    Google Scholar 

  2. West, J.M., McKinley, I.G., and Chapman, N.A., Microbes in Deep Geological Systems and Their Possible Influence on Radioactive Waste Disposal, Rad. Waste Management Nuclear Fuel Cycle, 1982, vol. 3, pp. 1–15.

    CAS  Google Scholar 

  3. Pedersen, K., Arlinger, J., Ekendahl, S., and Hallbeck, L., 16S RRNA Diversity of Attached and Unattached Bacteria in Boreholes Along the Access Tunnel To the Aspo Hard Rock Laboratory, Sweden, FEMS Microbiol. Ecol., 1996, vol. 19, pp. 249–262.

    CAS  Google Scholar 

  4. Stroes-Gascoyne, S. and West, J.M., Microbial Studies in the Canadian Nuclear Fuel Waste Management Program, FEMS Microbiol. Rev., 1997, vol. 20, pp. 573–590.

    Article  PubMed  CAS  Google Scholar 

  5. Pedersen, K., Investigation of Subterranean Bacteria in Deep Crystalline Bedrock and Their Importance for the Disposal of Nuclear Waste, Can. J. Microbiol., 1996, vol. 42, pp. 382–391.

    Article  Google Scholar 

  6. McKinley, I.G., Hagenlocher, I., Alexander, W.R., and Schwyn, B., Microbiology in Nuclear Waste Disposal: Interfaces and Reaction Fronts, FEMS Microbiol. Rev., 1997, vol. 20, pp. 545–556.

    Article  PubMed  CAS  Google Scholar 

  7. Humphreys, P., McGarry, R., Hoffmann, A., and Binks, P., DRINK: a Biogeochemical Source Term Model for Low Level Radioactive Waste Disposal Sites, FEMS Microbiol. Rev., 1997, vol. 20, pp. 557–572.

    Article  PubMed  CAS  Google Scholar 

  8. Nazina, T.N., Kosareva, I.M., Davydov, A.S., Turova, T.P., Novikova, E.V., Khafizov, R.R., and Poltaraus, A.B., Physicochemical and Microbiological Characteristics of Groundwater from Observation Wells of a Deep Radioactive Liquid Waste Repository, Mikrobiologiya, 2000, vol. 69, no. 1, pp. 105–112 [Microbiology (Engl. Transl.), vol. 69, no. 1, pp. 89–95].

    CAS  Google Scholar 

  9. Arkhipova, M.M., Kosareva, I.M., Petrunyaka, V.V., Kudriavtsev, E.G., Lebedev, V.A., Nazina, T.N., Revenko, J.A., and Khafizov, R.R., Physicochemical and Microbiological Characteristics of Formation Fluids of the Deep Repository of Liquid Radioactive Waste, Proc. 8th Intnl. Conf. on Radioactive Waste Management and Environmental Remediation (ICEM’01), Sept. 30–Oct. 4, 2001, Bruges, Belgium.

  10. Nazina, T.N., Kosareva, I.M., Petrunyaka, V.V., Savushkina, M.K., Kudriavtsev, E.G., Lebedev, V.A., Ahunov, V.D., Revenko, Yu.A., Khafizov, R.R., Osipov, G.A., Belyaev, S.S., and Ivanov, M.V., Microbiology of Formation Waters from the Deep Repository of Liquid Radioactive Wastes Severnyi, FEMS Microbiol. Ecol., 2004, vol. 49, pp. 97–107.

    Article  CAS  PubMed  Google Scholar 

  11. Belyaev, S.S. and Ivanov, M.V., Radioisotope Method for Measuring the Rates of Bacterial Methane Production, Mikrobiologiya, 1975, vol. 44, no. 1, pp. 166–168.

    CAS  Google Scholar 

  12. Postgate, J.R., The Sulfate-Reducing Bacteria. 2nd Ed, Cambridge: Cambridge University Press, 1984.

    Google Scholar 

  13. Adkins, J.P., Cornell, L.A., and Tanner, R.S., Microbial Composition of Carbonate Petroleum Reservoir Fluids, Geomicrobiol. J., 1992, vol. 10, pp. 87–97.

    Article  Google Scholar 

  14. Zeikus, J.G., Weimer, P.J., Nelson, D.R., and Daniels, L., Bacterial Methanogenesis: Acetate As a Methane Precursor in Pure Culture, Arch. Microbiol., 1975, vol. 104, pp. 129–134.

    Article  CAS  Google Scholar 

  15. Trüper, H.G. and Schlegel, H.G., Sulfur Metabolism in Thiorhodaceae. I. Quantitative Measurements on Growing Cells of Chromatium okenii, J. Microbiol. Serol., 1964, vol. 30, pp. 321–323.

    Google Scholar 

  16. Ivanov, M.V. and Terebkova, L.S., Study of Microbial Processes of H2S formation in Lake Solenoe, Mikrobiologiya, 1959, vol. 28, no. 2, pp. 251–256.

    CAS  Google Scholar 

  17. Laurinavichus, K.S. and Belyaev, S.S., Measuring the Rate of Microbiological Methane Production by the Radioisotope Method, Mikrobiologiya, 1978, vol. 47, no. 6, pp. 1115–1117.

    CAS  Google Scholar 

  18. Osipov, G.A., RF Patent No. 2086642, Byull. Izobret., No. 22.

  19. Marmur, J., A Procedure for the Isolation DNA from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  20. Edwards, U., Rogall, T., Bloeker, H., Ende, M.D., and Boeettge, E.C., Isolation and Direct Complete Nucleotide Determination of Entire Genes, Characterization of Gene Coding for 16S Ribosomal RNA, Nucleic Acids Res., 1989, vol. 17, pp. 7843–7853.

    PubMed  CAS  Google Scholar 

  21. Lowry, O.H., Rosenbough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

  22. Towner, K.J., The genus Acinetobacter, The Prokaryotes, Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-Z., Eds., New York: Springer, 1992, pp. 3137–3143.

    Google Scholar 

  23. Panikov, N.S., Kinetika rosta mikroorganizmov (Kinetics of Microbial Growth), Moscow: Nauka, 1991.

    Google Scholar 

  24. Francis, A.J., Gillow, J.B., Dodge, C.J., Dunn, M., Mantione, K., Strietelmeier, B.A., Pansoy-Hjelvik, M.E., and Papenguth, H.W., Role of Bacteria As Biocolloids in the Transport of Actinides from a Deep Underground Radioactive Waste Repository, Radiochim. Acta, 1998, vol. 82, pp. 347–354.

    CAS  Google Scholar 

  25. Lovley, D.R., Dissimilatory Metal Reduction, Annu. Rev. Microbiol., 1993, vol. 47, pp. 263–290.

    Article  PubMed  CAS  Google Scholar 

  26. Nealson, K.H. and Saffarini, D., Iron and Manganese in Anaerobic Respiration: Environmental Significance, Physiology, and Regulation, Annu. Rev. Microbiol., 1994, vol. 48, pp. 311–343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Nazina.

Additional information

Original Russian Text © T.N. Nazina, E.A. Luk’yanova, E.V. Zakharova, V.S. Ivoilov, A.B. Poltaraus, S.N. Kalmykov, S.S. Belyaev, A.A. Zubkov, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 6, pp. 836–848.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazina, T.N., Luk’yanova, E.A., Zakharova, E.V. et al. Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine. Microbiology 75, 727–738 (2006). https://doi.org/10.1134/S0026261706060178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261706060178

Keywords

Navigation