Skip to main content
Log in

Hexadecane Conversion on an Alumina–Nickel Catalyst

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The conversion of hexadecane on a 4% Ni/Al2O3 catalyst in a temperature range of 20–300°C was studied using IR spectroscopy and catalytic methods. It was found that the dehydrogenation of hexadecane occurred at 20–100°C with the subsequent formation of aromatic products, but the rates of these processes were very low. As the reaction temperature was increased to 200°C, the 4% Ni/Al2O3 catalyst exhibited a maximum activity and high selectivity for the formation of 1-hexadecene, and aromatic compounds and cracking products were present in the reaction products. As the reaction temperature was further increased, the catalytic activity significantly decreased. This was due to the fact that polyaromatic deposits gradually accumulated on the catalyst surface in a temperature range of 200–300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Surkov, V.G., Pevneva, G.S., and Golovko, A.K., Neftepererab. Neftekhim., 2015, no. 12, p. 6.

  2. Serrano-Ruiz, J.C., Applied Industrial Catalysis, New York: Arcler Press, 2017, p. 149.

    Google Scholar 

  3. Kaiser, M.J., Gary, J.H., and Handwerk, G.E., Petroleum Refining: Technology and Economics, Boca Raton, FL: CRC Press, 2007.

  4. Pokhodenko, N.T. and Brondz, B.I., Poluchenie i obrabotka neftyanogo koksa (Synthesis and Treatment of Petroleum Coke), Moscow: Khimiya, 1986

  5. Kretinin, M.V., Mekhanotekhnologicheskie aspekty proizvodstva neftyanogo koksa (Mechanotechnological Aspects of Production of Petroleum Coke), Ufa: Institute of Petrochemical Processing, 2009.

  6. Kelemen, S.R., Siskin, M., Gorbaty, M.L., Ferrughelli, D.T., Kwiatek, P.J., Brown, L.D., Eppig, C.P., and Kennedy, R.J., Energy Fuels, 2007, vol. 21, no. 2, p. 927.

    Article  CAS  Google Scholar 

  7. Vasil’eva, N.A., Doctoral Sci. (Chem.) Dissertation, Novosibirsk: Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 1999

  8. Krasyukov, A.F., Neftyanoi koks (Petroleum Coke), Moscow: Khimiya, 1966

  9. Levinter, M.E., Medvedeva, M.I., Panchenkov, G.M., Aseev, Yu.G., Nedoshivin, Yu.N., Finkel’shtein, G.B., and Galiakbarov, M.F., Khim. Tekhnol. Topl. Masel, 1966, no. 9, p. 31.

  10. Levinter, M.E., Medvedeva, M.I., Panchenkov, G.M., and Agapov, G.I., Khim. Tekhnol. Topl. Masel, 1966, no. 11, p. 25.

  11. Rudenko, A.P., Sovremennye problemy fizicheskoi khimii (Modern Problems of Physical Chemistry), Moscow: Moscow State University, 1968, vol. 3, p. 263.

  12. Buyanov, R.A., Zakoksovanie katalizatorov (Coking of Catalysts), Novosibirsk: Nauka, 1983, p. 16.

  13. Wu, G., Katsumura, Y., Matsuura, C., and Ishigure, K., Ind. Eng. Chem. Res., 1996, vol. 35, p. 4747.

    Article  CAS  Google Scholar 

  14. Wangen, E.S., McCaffrey, W.C., Kuznicki, S., Hoff, A., and Blekkan, E.A., Top. Catal., 2007, vol. 45, nos. 1–4, p. 213. https://doi.org/10.1007/s11244-007-0268-x

    Article  CAS  Google Scholar 

  15. Khorasheh, F. and Gray, M.R., Ind. Eng. Chem. Res., 1993, vol. 32, p. 1853.

    Article  CAS  Google Scholar 

  16. Bounaceur, R., Scacchi, G., Marquaire, P.-M., Domine, F., Bre’vart, O., Dessort, D., and Pradier, B., Ind. Eng. Chem. Res., 2002, vol. 41, p. 4689.

    Article  CAS  Google Scholar 

  17. Watanabe, M., Tsukagoshi, M., Hirakoso, H., Adschiri, T., and Arai, K., AIChE J., 2000, vol. 46, no. 4, p. 843.

    Article  CAS  Google Scholar 

  18. Ford, T.J., Ind. Eng. Chem. Res., 1986, vol. 25, p. 240.

    CAS  Google Scholar 

  19. Fabuss, B.M., Smith, J.O., Lait, R.I., Borsanyi, A.S., and Satterfield, C.N., Ind. Eng. Chem. Process Des. Dev., 1962, vol. 1, no. 4, p. 293.

    Article  CAS  Google Scholar 

  20. Chesnokov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, no. 7, p. 623.

    Article  CAS  Google Scholar 

  21. Buyanov, R.A. and Chesnokov, V.V., Katal. Prom-sti, 2006, no. 2, p. 3.

  22. Chesnokov, V.V., Chichkan’, A.S., and Parmon, V.N., Katal. Prom-sti, 2018, vol. 18, no. 1, p. 67.

    Google Scholar 

  23. Chesnokov, V.V., Chichkan’, A.S., Zaikovskii, V.I., and Parmon, V.N., Kinet. Catal., 2013. T. 54, no. 2, p. 213.

  24. Chesnokov, V.V., Podyacheva, O.Y., Shmakov, A.N., Kibis, L.S., Boronin, A.I., and Ismagilov, Z.R., Chin. J. Catal., 2016, vol. 37, no. 1, p. 169.

    Article  CAS  Google Scholar 

  25. Prokudina, N.A., Chesnokov, V.V., Paukshtis, E.A., and Buyanov, R.A., Kinet. Katal., 1989, vol. 30, p. 949.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-73-30032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Chesnokov or A. S. Chichkan.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, V.V., Chichkan, A.S., Paukshtis, E.A. et al. Hexadecane Conversion on an Alumina–Nickel Catalyst. Kinet Catal 60, 439–445 (2019). https://doi.org/10.1134/S0023158419040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419040025

Keywords:

Navigation