Skip to main content
Log in

Photocatalysis: Light energy conversion for the oxidation, disinfection, and decomposition of water

  • VIII International Conference on Mechanisms of Catalytic Reactions
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The results of many-year studies of the relationship between the physical properties and photocatalytic activity of TiO2 and Pt/TiO2 in photocatalytic purification and disinfection of air and water and water photodecomposition with oxygen evolution are presented. Recommendations are given as to finding the optimal method for platinum supporting on TiO2 to achieve the highest possible catalytic activity. Multisite kinetic models of the gas-phase oxidation of simple organic substances are considered. Methods for regenerating the photocatalyst after its deactivation in the oxidation of sulfur-containing organic substances are suggested. New data are discussed on the acceleration of air purification by the combination of photocatalytic oxidation with atmospheric electric discharges, the addition of gaseous hydrogen peroxide, and oxidation on photocatalysts existing in the aerosol state. As compared to pure TiO2, platinated titanium dioxide has a higher capability for disinfection and complete mineralization of microorganisms. Two promising methods for production of hydrogen from water using solar light are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parmon, V.N., in Fotokataliticheskoe preobrazovanie solnechnoi energii: Geterogennye, gomogennye i molekulyarnye strukturno-organizovannye sistemy (Photocatalytic Conversion of Solar Energy: Heterogeneous, Homogeneous, and Molecular Structured Systems), Novosibirsk: Nauka, 1991, p. 7.

    Google Scholar 

  2. Vorontsov, A.V., Usp. Khim., 2008, vol. 77, p. 973.

    Google Scholar 

  3. Nikazar, M., Golivand, K., and Makhanpur, K., Kinet. Katal., 2007, vol. 48, p. 230 [Kinet. Catal. (Engl. Transl.), vol. 48, p. 214].

    Google Scholar 

  4. Shi, Dzh., Zheng, Dzh., Khu, Ya., and Zhao, Yu., Kinet. Katal., 2008, vol. 49, p. 293 [Kinet. Catal. (Engl. Transl.), vol. 49, p. 279].

    Google Scholar 

  5. Jothiramalingam, R., Tsao, T.M., and Wang, M.K., Kinet. Katal., 2009, vol. 50, p. 771 [Kinet. Catal. (Engl. Transl.), vol. 50, p. 741].

    Article  Google Scholar 

  6. Zenkovets, G.A., Gavrilov, V.Yu., Shutilov, A.A., and Tsybulya, S.V., Kinet. Katal., 2009, vol. 50, p. 790 [Kinet. Catal. (Engl. Transl.), vol. 50, p. 760].

    Article  Google Scholar 

  7. Aikin Chzhan, Nin Chzhan, Sanguo Khon, and Min Chzhan, Kinet. Katal., 2009, vol. 50, p. 778 [Kinet. Catal. (Engl. Transl.), vol. 50, p. 748].

    Google Scholar 

  8. Renz, C., Helv. Chim. Acta, 1921, vol. 4, p. 961.

    Article  CAS  Google Scholar 

  9. Fujishima, A., Hashimoto, K., and Watanabe, T., TiO 2 Photocatalysis, Tokyo: Bkc, 1999.

    Google Scholar 

  10. Ireland, J.C., Klostermann, P., Rice, E.W., and Clark, R.M., Appl. Environ. Microbiol., 1993, vol. 59, p. 1668.

    CAS  Google Scholar 

  11. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M., and Fennell, J.A., Environ. Sci. Technol., 1998, vol. 32, p. 2650.

    Article  CAS  Google Scholar 

  12. Fujishima, A. and Honda, K., Nature, 1972, vol. 238, p. 37.

    Article  CAS  Google Scholar 

  13. Vorontsov, A.V., Altynnikov, A.A., Savinov, E.N., and Kurkin, E.N., J. Photochem. Photobiol. A, 2001, vol. 144, p. 193.

    Article  CAS  Google Scholar 

  14. Vorontsov, A.V., Savinov, E.N., Barannik, G.B., Troitsky, V.N., and Parmon, V.N., Catal. Today, 1997, vol. 39, p. 207.

    Article  CAS  Google Scholar 

  15. Vorontsov, A.V. and Dubovitskaya, V.P., J. Catal., 2004, vol. 221, p. 102.

    Article  CAS  Google Scholar 

  16. Bedilo, A.F. and Volodin, A.M., Kinet. Katal., 2009, vol. 50, p. 332 [Kinet. Catal. (Engl. Transl.), vol. 50, p. 314].

    Article  Google Scholar 

  17. Vorontsov, A.V., Catal. Commun., 2007, vol. 8, p. 2100.

    Article  CAS  Google Scholar 

  18. Parmon, V.N and Zamaraev, K.I, in Handbook of Heterogeneous Catalysis, Ertl, G., Knozinger, H., and Weitkamp, J., Eds., 1997, vol. 4, p. 686.

  19. Besov, A.S., Vorontsov, A.V., and Parmon, V.N., Appl. Catal., B, 2009, vol. 89, p. 602.

    Article  CAS  Google Scholar 

  20. Besov, A.S., Trubitsyn, D.A., and Vorontsov, A.V., Katal. Prom-sti., 2010, no. 1, p. 35.

  21. Watts, R.J., Kong, S., Orr, M.P., Miller, G.C., and Henry, B.E., Water Res., 1995, vol. 29, p. 95.

    Article  CAS  Google Scholar 

  22. Sichel, C., Cara, M., Tello, J., Blanco, J., and Fernández-Iáez, P., Appl. Catal., B, 2007, vol. 74, p. 152.

    Article  CAS  Google Scholar 

  23. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M., and Fennell, J.A., Environ. Sci. Technol., 1998, vol. 32, p. 2650.

    Article  CAS  Google Scholar 

  24. Pal, A., Pehkonen, S.O., Yu, L.E., and Ray, M.B., J. Photochem. Photobiol., A, 2007, vol. 186, p. 335.

    Article  CAS  Google Scholar 

  25. Kozlova, E.A., Korobkina, T.P., Vorontsov, A.V., and Parmon, V.N., Appl. Catal., A, 2009, vol. 367, p. 130.

    Article  CAS  Google Scholar 

  26. Kozlova, E.A., Safatov, A.S., Kiselev, S.A., Marchenko, V.Yu., Sergeev, A.A., Skarnovich, M.O., Emelyanova, E.K., Smetannikova, M.A., Buryak, G.A., and Vorontsov, A.V., Environ. Sci. Technol., 2010, vol. 41, p. 5121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vorontsov.

Additional information

Original Russian Text © A.V. Vorontsov, E.A. Kozlova, A.S. Besov, D.V. Kozlov, S.A. Kiselev, A.S. Safatov, 2010, published in Kinetika i Kataliz, 2010, Vol. 51, No. 6, pp. 829–836.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorontsov, A.V., Kozlova, E.A., Besov, A.S. et al. Photocatalysis: Light energy conversion for the oxidation, disinfection, and decomposition of water. Kinet Catal 51, 801–808 (2010). https://doi.org/10.1134/S0023158410060042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158410060042

Keywords

Navigation