Skip to main content
Log in

Activity of Rh/TiO2 catalysts in NaBH4 hydrolysis: The effect of the interaction between RhCl3 and the anatase surface during heat treatment

  • III International Conference “Catalysis: Fundamentals and Applications”
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The reaction properties of Rh/TiO2 sodium tetrahydroborate hydrolysis catalysts reduced directly in the reaction medium depend on the temperature at which they were calcined. Raising the calcination temperature to 300°C enhances the activity of the Rh/TiO2 catalysts. Using diffuse reflectance electronic spectroscopy, photoacoustic IR spectroscopy, and chemical and thermal analyses, it is demonstrated that, as RhCl3 is supported on TiO2 (anatase), the active-component precursor interacts strongly with the support surface. The degree of this interaction increases as the calcination temperature is raised. TEM, EXAFS, and XANES data have demonstrated that the composition and structure of the rhodium complexes that form on the titanium dioxide surface during different heat treatments later determine the state of the supported rhodium particles forming in the sodium tetrahydroborate reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hockstra, H.R., and Hyde, E.K., J. Am. Chem. Soc., 1953, vol. 75, p. 215.

    Article  CAS  Google Scholar 

  2. Ross, D.K., Vacuum, 2006, vol. 80, p. 1084.

    Article  CAS  Google Scholar 

  3. Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Kelly, M.T., Petillo, P.J., and Binger, M., J. Power Sources, 2000, vol. 85, p. 186.

    Article  CAS  Google Scholar 

  4. Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Spencer, N.C., Kelly, M.T., Petillo, P.J., and Binger, M., Int. J. Hydrogen Energy, 2000, vol. 25, p. 969.

    Article  CAS  Google Scholar 

  5. Xia, Z.T. and Chan, S.H., J. Power Soruces, 2005, vol. 152, p. 46.

    Article  CAS  Google Scholar 

  6. Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., and Hayashi, H., Int. J. Hydrogen Energy, 2002, vol. 27, p. 1029.

    Article  CAS  Google Scholar 

  7. Richardson, B.S., Birdwell, J.F., Pin, F.G., Jansen, J.F., and Lind, R.F., J. Power Sources, 2005, vol. 145, p. 21.

    Article  CAS  Google Scholar 

  8. Wu, C., Zhang, H., and Yi, B., Catal. Today, 2004, vols. 93–95, p. 477.

    Article  Google Scholar 

  9. Simagina, V.I., Storozhenko, P.A., Netskina, O.V., Komova, O.V., Odegova, G.V., Samoilenko, T.Yu., and Gentsler, A.G., Kinet. Katal., 2007, vol. 48, no. 1, p. 177 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 1, p. 168].

    Article  Google Scholar 

  10. Mal’tseva, N.N. and Khain, V.S., Borogidrid natriya (Sodium Tetrahydroborate), Moscow: Nauka, 1985.

    Google Scholar 

  11. Kraus, W. and Nolze, G., PowderCell for Windows (Version 2.3), Berlin: Federal Institute for Materials Research and Testing, 1999.

    Google Scholar 

  12. Klementev, K.V., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 209.

    Article  CAS  Google Scholar 

  13. Rehr, J.J. and Ankudinov, A.L., Radiat. Phys. Chem., 2004, vol. 70, p. 453.

    Article  CAS  Google Scholar 

  14. Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984, p. 554.

    Google Scholar 

  15. Odegova, G.V. and Slavinskaya, E.M., Kinet. Katal., 2004, vol. 45, no. 1, p. 146 [Kinet. Catal. (Engl. Transl.), vol. 45, no. 1, p. 133].

    Article  Google Scholar 

  16. Komova, O.V., Simakov, A.V., Rogov, V.A., Kochubei, D.I., Odegova, G.V., Kriventsov, V.V., Paukshtis, E.A., Ushakov, V.A., Sazonova, N.N., and Nikoro, T.A., J. Mol. Catal. A: Chem., 2000, vol. 161, p. 191.

    Article  CAS  Google Scholar 

  17. Vodorodnaya svyaz’ (Hydrogen Bond), Sokolov, N.D., Ed., Moscow: Nauka, 1981, p. 286.

    Google Scholar 

  18. Nickl, J., Dutoit, D., and Baiker, A., Appl. Catal., A, 1993, vol. 98, p. 173.

    Article  CAS  Google Scholar 

  19. Hadjiivanov, K.I., Klissurski, D.G., and Davydov, A.A., J. Catal., 1989, vol. 116, p. 498.

    Article  CAS  Google Scholar 

  20. Coey, J.M.D., Acta Crystallogr., Sect. B: Struct. Sci., 1970, vol. 26, p. 1876.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Simagina.

Additional information

Original Russian Text © V.I. Simagina, O.V. Netskina, O.V. Komova, G.V. Odegova, D.I. Kochubei, A.V. Ishchenko, 2008, published in Kinetika i Kataliz, 2008, Vol. 49, No. 4, pp. 592–598.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simagina, V.I., Netskina, O.V., Komova, O.V. et al. Activity of Rh/TiO2 catalysts in NaBH4 hydrolysis: The effect of the interaction between RhCl3 and the anatase surface during heat treatment. Kinet Catal 49, 568–573 (2008). https://doi.org/10.1134/S0023158408040174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158408040174

Keywords

Navigation