Skip to main content
Log in

Selective CO oxidation on a Ru/Al2O3 catalyst in the surface ignition regime: 1. Fine purification of hydrogen-containing gases

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ∼20 vol %) at a volumetric flow rate of ∼100 1 (g Cat)−1 h−1, which is one magnitude higher than the flow rates reported for this process in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards, N., Ellis, S.R., Frost, J.C., Golunski, S.E., van Keulen, A.N.J., Lindewald, N.G., and Reinkingh, J.G., J. Power Sources, 1998, vol. 71, p. 123.

    Article  CAS  Google Scholar 

  2. US Patent 6576208, 2003.

  3. Echigo, M. and Tabata, T., Appl. Catal., A, 2003, vol. 251, p. 157.

    Article  CAS  Google Scholar 

  4. Snytnikov, P.V., Extended Abstract of Cand. Sci. (Chem.) Dissertation, Novosibirsk: Inst. of Catalysis, 2004.

    Google Scholar 

  5. Eur. Patent 1 485 202, 2003.

  6. Snytnikov, P.V., Sobyanin, V.A., Belyaev, V.D., Tsyrulnikov, P.G., Shitova, N.B., and Shlyapin, D.A., Appl. Catal., A, 2003, vol. 239, p. 149.

    Article  CAS  Google Scholar 

  7. Kawatsu, S., J. Power Sources, 1998, vol. 71, p. 150.

    Article  CAS  Google Scholar 

  8. Dudfield, C.D., Chen, R., and Adcock, P.L., J. Power Sources, 2000, vol. 86, p. 214.

    Article  CAS  Google Scholar 

  9. Kipnis, M.A., Volnina, E.A., Samokhin, P.V., Lin, G.I., and Rozovskii, A.Ya., Tezisy dokl. 1 Vseross. konf. “Khimiya dlya avtomobil’nogo transporta” (Proc. 1st Russian Conf. on Chemistry for Automotive Applications), Novosibirsk, 2004, pp. 199.

  10. Dudfield, C.D., Chen, R., and Adcock, P.L., J. Power Sources, 2000, vol. 85, p. 237.

    Article  CAS  Google Scholar 

  11. Rosso, I., Galletti, C., Saracco, G., Garrone, E., and Specchia, V., Appl. Catal., B, 2004, vol. 48, p. 195.

    Article  CAS  Google Scholar 

  12. Worner, A., Friedrich, C., and Tamme, R., Appl. Catal., A, 2003, vol. 245, p. 1.

    Article  CAS  Google Scholar 

  13. Han, Y.-F., Kahlich, M.J., Kinne, M., and Behm, R.J., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 389.

    Article  CAS  Google Scholar 

  14. Rozovskii, A. Ya., Kipnis, M.A., Volnina, E.A., Lin, G.I., and Samokhin, P.V., Kinet. Katal., 2004, vol. 45, no. 4, p. 654 [Kinet. Catal. (Engl. Transl.), vol. 45, no. 4, p. 618].

    Article  Google Scholar 

  15. Rozovskii, A. Ya., Kipnis, M.A., Volnina, E.A., Lin, G.I., and Samokhin, P.V., Kinet. Katal. (in press).

  16. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967.

    Google Scholar 

  17. Rozovskii, A.Ya., Kinetika topokhimicheskikh reaktsii (Kinetics of Topochemical Reactions), Moscow: Nauka, 1980.

    Google Scholar 

  18. Zhilyaeva, N.A., Volnina, E.A., Shuikina, L.P., and Frolov, V.M., Neftekhimiya, 2000, vol. 40, no. 6, p. 422 [Pet. Chem. (Engl. Transl.), vol. 40, no. 6, p. 383].

    CAS  Google Scholar 

  19. Kiss, J.T. and Gonzalez, R.D., J. Phys. Chem., 1984, vol. 88, p. 892.

    Article  CAS  Google Scholar 

  20. Amann, J., Crihan, D., Knapp, M., Lundgren, E., Loffler, E., Muhler, M., Narknede, V., Over, H., Schmid, M., Seitsonen, A.P., and Varga, P., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, p. 917.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Rozovskii.

Additional information

Original Russian Text © A.Ya. Rozovskii, M.A. Kipnis, E.A. Volnina, P.V. Samokhin, G.I. Lin, 2008, published in Kinetika i Kataliz, 2008, Vol. 49, No. 1, pp. 99–109.

The article includes materials from the authors’ report at the II Russian Conference on Current Problems in Petroleum Chemistry, Ufa, October 11–13, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozovskii, A.Y., Kipnis, M.A., Volnina, E.A. et al. Selective CO oxidation on a Ru/Al2O3 catalyst in the surface ignition regime: 1. Fine purification of hydrogen-containing gases. Kinet Catal 49, 92–102 (2008). https://doi.org/10.1134/S0023158408010114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158408010114

Keywords

Navigation