Skip to main content
Log in

STRUCTURALLY CHARACTERIZED SELF-ASSEMBLED HETEROBIMETALLIC Ni(II)–Eu(III)-SALAMO-BIPYRIDINE COORDINATION POLYMER: SYNTHESIS, PHOTOPHYSICAL AND ANTIMICROBIAL PROPERTIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

An independent self-assembling heterobimetallic [Ni(II)–Eu(III)] salamo-like coordination polymer, \(^1_\infty\)[Ni(L)Eu(NO3)3(4,4′-bipy)], is synthesized by the one-pot reaction of a symmetrical salamo-like hexadentate ligand (H2L = 6,6′-dimethoxy-2,2′-[1,2-ethylenedioxybis(nitrilomethylidyne)]diphenol), Ni(OAc)4H2O, Eu(NO3)6H2O, and 4,4′-bipy. The coordination polymer is obtained by the reaction in the 1:1:1:1 ratio and characterized by elemental analyses, IR and UV-Vis absorption spectra, and single crystal X-ray diffraction. The newly synthesized polymer is constructed from heterobimetallic [Ni(II)(L)Eu(III)] units connected by the 4,4′-bipy exodentate ligand bearing N donor atoms. Meanwhile, the hydrogen bonding, π⋯π stacking and C–H⋯π interactions play an important role in the structure of the coordination polymer. In terms of the antibacterial activity, the polymer dissolved in DMF has a good antibacterial effect on Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Y. X. Sun, Y. Q. Pan, X. Xu, and Y. Zhang. Crystals, 2019, 9, 607.

  2. P. Wang and L. Zhao. Spectrochim. Acta A, 2015, 135, 342.

  3. Y. D. Peng, F. Wang, L. Gao, and W. K. Dong. J. Chin. Chem. Soc., 2018, 65, 893.

  4. S. Akine, T. Taniguchi, and T. Nabeshima. Angew. Chem., 2001, 114, 4864.

  5. Y. Q. Pan, X. Xu, Y. Zhang, Y. Zhang, and W. K. Dong. Spectrochim. Acta A, 2020, 229, 117917.

  6. S. Akine, S. Sunaga, T. Taniguchi, H. Miyazaki, and T. Nabeshima. Inorg. Chem., 2007, 46, 2959.

  7. J. Hao, X. Y. Li, L. Wang, Y. Zhang, and W. K. Dong. Spectrochim. Acta A, 2018, 204, 388.

  8. J. Hao, X. Y. Li, Y. Zhang, and W. K. Dong. Materials, 2018, 11, 523.

  9. F. Wang, L. Z. Liu, L. Gao, and W. K. Dong. Spectrochim. Acta A, 2018, 203, 56.

  10. X. Y. Li, Q. P. Kang, L. Z. Liu, J. C. Ma, and W. K. Dong. Crystals, 2018, 8, 43.

  11. L. Gao, C. Liu, F. Wang, and W. K. Dong. Crystals, 2018, 8, 77.

  12. Y. X. Sun, L. Z. Liu, F. Wang, X. Y. Shang, L. Chen, and W. K. Dong. Crystals, 2018, 8, 227.

  13. X. X. An, Q. Zhao, H. R. Mu, and W. K. Dong. Crystals, 2019, 9, 101.

  14. L. Z. Liu, L. Wang, M. Yu, Q. Zhao, Y. Zhang, Y. X. Sun, and W. K. Dong. Spectrochim. Acta A, 2019, 222, 117209.

  15. L. Z. Liu, M. Yu, X. Y. Li, Q. P. Kang, and W. K. Dong. Chin. J. Inorg. Chem., 2019, 35, 1283.

  16. X. Y. Li, Q. P. Kang, C. Liu, Y. Zhang, and W. K. Dong. New J. Chem., 2019, 43, 4605.

  17. X. Q. Song, P. P. Liu, Y. A. Liu, J. J. Zhou, and X. L. Wang. Dalton Trans., 2016, 45, 8154.

  18. Y. A. Liu, C. Y. Wang, M. Zhang, and X. Q. Song. Polyhedron, 2017, 127, 278.

  19. T. D. Pasatoiu, C. Tiseanu, A. M. Madalan, B. Jurca, C. Duhayon, J. P. Sutter, and M. Andruh. Inorg. Chem., 2011, 50, 5879.

  20. Q. Zhao, X. X. An, L. Z. Liu, and W. K. Dong. Inorg. Chim. Acta, 2019, 490, 6.

  21. X. Y. Dong, Q. Zhao, Q. P. Kang, X. Y. Li, and W. K. Dong. Crystals, 2018, 8, 230.

  22. Y. Zhang, M. Yu, Y. Q. Pan, Y. Zhang, L. Xu, and W. K. Dong. Appl. Organomet. Chem., 2020, 34, e5442.

  23. X. Y. Dong, Q. Zhao, Z. L. Wei, H. R. Mu, H. Zhang, and W. K. Dong. Molecules, 2018, 23, 1006.

  24. L. W. Zhang, X. Y. Li, Q. P. Kang, L. Z. Liu, J. C. Ma, and W. K. Dong. Crystals, 2018, 8, 173.

  25. W. K. Dong, J. C. Ma, L. C. Zhu, and Y. Zhang. New J. Chem., 2016, 40, 6998.

  26. P. P. Liu, L. Sheng, X. Q. Song, W. Y. Xu, and Y. A. Liu. Inorg. Chim. Acta, 2015, 434, 252.

  27. Y. D. Peng, X. Y. Li, Q. P. Kang, G. X. An, Y. Zhang, and W. K. Dong. Crystals, 2018, 8, 107.

  28. Y. Q. Pan, Y. Zhang, M. Yu, Y. Zhang, and L. Wang. Appl. Organomet. Chem., 2020, 34, e5441.

  29. Z. L. Ren, J. Hao, P. Hao, X. Y. Dong, Y. Bai, and W. K. Dong, Z. Naturforsch. B, 2018, 73, 203

  30. H. L. Wu, Y. C. Bai, Y. H. Zhang, Z. Li, M. C. Wu, C. Y. Chen, and J. W. Zhang. J. Coord. Chem., 2014, 67, 3054.

  31. C. Y. Chen, J. W. Zhang, Y. H. Zhang, Z. H. Yang, H. L. Wu, G. L. Pan, and Y. C. Bai. J. Coord. Chem., 2015, 68, 1054.

  32. H. L. Wu, Y. C. Bai, Y. H. Zhang, G. L. Pan, J. Kong, F. R. Shi, and X. L. Wang. Z. Anorg. Allg. Chem., 2014, 640, 2062.

  33. H. L. Wu, G. L. Pan, Y. C. Bai, Y. H. Zhang, H. Wang, F. R. Shi, and X. L. Wang. J. Photochem. Photobiol., B, 2014, 135, 33.

  34. H. L. Wu, G. L. Pan, Y. C. Bai, H. Wang, J. Kong, F. R. Shi, Y. H. Zhang, and X. L. Wang. J. Chem. Res., 2014, 38, 211.

  35. S. Akine and T. Nabeshima. Dalton Trans., 2009, 10395.

  36. Y. F. Cui, Y. Zhang, K. F. Xie, and W. K. Dong. Crystals, 2019, 9, 596.

  37. L. W. Zhang, L. Z. Liu, F. Wang, and W. K. Dong. Molecules, 2018, 23, 1141.

  38. Z. L. Chu and W. Huang. J. Mol. Struct., 2007, 837, 15.

  39. Q. P. Kang, X. Y. Li, L. Wang, Y. Zhang, and W. K. Dong. Appl. Organomet. Chim., 2019, 33, e5013.

  40. Y. Zhang, L. Z. Liu, Y. D. Peng, N. Li, and W. K. Dong. Transit. Met. Chem., 2019, 44, 627.

  41. Q. P. Kang, X. Y. Li, Z. L. Wei, Y. Zhang, and W. K. Dong. Polyhedron, 2019, 38, 165.

  42. H. J. Zhang, J. Chang, H. R. Jia, and Y. X. Sun. Chin. J. Inorg. Chem., 2018, 34, 2261.

  43. H. R. Jia, J. Chang, H. J. Zhang, J. Li, and Y. X. Sun. Crystals, 2018, 8, 272.

  44. J. Chang, H. J. Zhang, H. R. Jia, and Y. X. Sun. Chin. J. Inorg. Chem., 2018, 34, 2097.

  45. Q. P. Kang, X. Y. Li, Q. Zhao, J. C. Ma, and W. K. Dong. Appl. Organomet. Chem., 2018, 32, e4379.

  46. X. Y. Dong, Q. P. Kang, X. Y. Li, J. C. Ma, and W. K. Dong. Crystals, 2018, 8, 139.

  47. C. D. Tabong, D. M. Yufanyi, A. G. Paboudam, K. N. Nono, D. B. Eni, and M. O. Agwara. Adv. Chem., 2016, 1.

  48. I. R. Colinas, M. D. Rojas-Andrade, I. Chakraborty, and . CrystEngComm, 2018, 20, 3353.

  49. A. Rauf, J. Ye, S. Zhang, L. Shi, M. A. Akram, and G. Ning. Polyhedron, 2019, 166, 130.

  50. C. Liu, X. X. An, Y. F. Cui, K. F. Xie, and W. K. Dong. Appl. Organomet. Chem., 2020, 34, e5272.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), Science and Technology Program of Gansu Province (18YF1GA057) and the Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), three of which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W K Dong.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, H.R., An, X.X., Liu, C. et al. STRUCTURALLY CHARACTERIZED SELF-ASSEMBLED HETEROBIMETALLIC Ni(II)–Eu(III)-SALAMO-BIPYRIDINE COORDINATION POLYMER: SYNTHESIS, PHOTOPHYSICAL AND ANTIMICROBIAL PROPERTIES. J Struct Chem 61, 1155–1166 (2020). https://doi.org/10.1134/S0022476620070203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620070203

Keywords

Navigation