Skip to main content
Log in

Solving the Schrödinger Equation for Helium-Like Ions with the Method of Configuration Weight Functions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Schrödinger equations for helium-like ions from H to Ar16+ are solved by a novel method using the surfaces of the constant potential of electron-electron interaction. Similar to the method of configuration interaction, the wave function is represented as a linear combination of configuration wave functions, with the difference that their coefficients (referred to below as “configuration weight functions”), depend on the interaction potential. The basis functions are represented by the wave functions of noninteracting electrons in the Coulomb field of atomic nuclei. In the single-configuration approximation, the energies calculated for the ions appear to be lower than those calculated within the Hartree-Fock limit. The accuracy of energy calculations using three configurations (1s, 2s, and 3s functions) is close to the accuracy achieved with 35 configurations within the method of configuration interaction. The account of four configurations provides lower energies than those obtained by the configuration interaction method and slightly lower than those obtained with Hylleraas wave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hylleraas. Z. Phys., 1929, 54, 347.

    Article  CAS  Google Scholar 

  2. K. Francowski and C. L. Pekeris. Phys. Rev., 1966, 146, 46.

    Article  Google Scholar 

  3. G. W. F. Drake and Z. C. Yan. Chem. Phys. Lett., 1994, 229, 486.

    Article  CAS  Google Scholar 

  4. A. J. Thakkar and V. H. Smith. Phys. Rev. A, 1977, 15, 1.

    Article  CAS  Google Scholar 

  5. A. J. Thakkar and V. H. Smith. Phys. Rev. A, 1977, 5, 16.

    Article  Google Scholar 

  6. S. A. Alexander and H. J. Monkhorst. Phys. Rev. A, 1988, 38, 26.

    Article  CAS  Google Scholar 

  7. V. Korobov. Phys. Rev. A, 2017, 0645038, 1.

    Google Scholar 

  8. A. Weiss. Phys. Rev., 1961, 122, 1826.

    Article  CAS  Google Scholar 

  9. C. Roothaan and A. Weiss. Revs. Modern Phys., 1960, 32, 194.

    Article  CAS  Google Scholar 

  10. B. Saha, S. Bhattacharyya, et al. Int. J. Quantum Chem., 2003, 92, 413.

    Article  CAS  Google Scholar 

  11. V. Tapilin. J. Struct. Chem., 2008, 49, 387.

    Article  CAS  Google Scholar 

  12. V. Tapilin. J. Struct. Chem., 2017, 58, 1.

    Article  CAS  Google Scholar 

  13. W. Press, W. Tenkolsky, et al. Numerical Recipes in Fortran 90: The art of Parralel Scientific Compputing. Cambrige: University Press, 2002, 727.

    Google Scholar 

  14. N. Yanenko. The Method of Fractional Steps (The solution of problems of marhematical physiscs in severable variables). Berlin: Springer-Verl., 1971.

    Google Scholar 

  15. S. K. Godunov and V. S. Ryabenkii. Difference Schemes An Introduction to the Underlying Theory. Amsterdam: Elsevier Science, 1977 (1987).

    Google Scholar 

  16. E. Clementi and C. Roetti. At. Data Nucl. Data, 1974, 14, 177.

    Article  CAS  Google Scholar 

  17. A. J. Thakkar and T. Koga. Phys. Rev. A, 1994, 50, 854.

    Article  CAS  PubMed  Google Scholar 

  18. C. Moore. Atomic Energy Levels. Vol. 1, NSRDS-NBS 35, 1971.

    Google Scholar 

  19. S. Bashkin and J. Jr. Stoner. Atomic Energy Levels and Grotrian Diograms. Vol. I and II. Amsterdam: North-Holland, 1975, 1978, 16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Tapilin.

Additional information

Russian Text © 2019 V. M. Tapilin.

Translated from Zhurnal Strukturnoi Khimii, Vol. 60, No. 1, pp. 5–10, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapilin, V.M. Solving the Schrödinger Equation for Helium-Like Ions with the Method of Configuration Weight Functions. J Struct Chem 60, 1–6 (2019). https://doi.org/10.1134/S0022476619010013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619010013

Keywords

Navigation