Skip to main content
Log in

Involvement of Acetylcholine and Na+,K+-ATPase in the Regulation of Skeletal Muscle Growth in a Chicken Embryo

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Recently, much attention has been paid to the discussion of the trophic function of the nervous system and its involvement in triggering the signaling cascades that regulate cellular metabolism. The role of acetylcholine and Na+,K+-ATPase in the regulation of skeletal muscle growth was evaluated in 10–12-day-old chicken embryos under conditions of organotypic tissue culture. Acetylcholine had a maximum trophotropic effect at a concentration 10–8 M. An inhibitory analysis proved the involvement of the nicotinic acetylcholine receptor (nAChR) in this effect. Ouabain regulated the growth of skeletal muscle explants in a dose-dependent manner. At concentrations comparable to the physiological, it stimulated the growth of experimental explants by 33% compared to the control value. Ouabain was found to have myotoxic properties in the concentration range of 10–6–10–4 M. Acetylcholine abolished the myotoxic effect of ouabain (10–6 M) both directly, acting on Na+,K+-ATPase, and via the nAChR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Malomouzh AI, Nikolsky EE (2018) Modern concepts of cholinergic neurotransmission at the motor synapse. Biochemistry (Moscow) Suppl Series A Membrane and Cell Biology 12 (3): 209–222. https://doi.org/10.1134/S1990747818030078

  2. Mitchell JF, Silver A (1963) The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J Physiol 165(1): 117–129. https://doi.org/10.1113/jphysiol.1963.sp007046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kubasov IV, Krivoi II, Lopatina E V (1994) Effect of exogenous acetylcholine on neuromuscular transmission in the stimulated rat diaphragm. Bull Exp Biol Med 118(5): 1153–1155. https://doi.org/10.1007/BF02444610

    Article  Google Scholar 

  4. Krivoi II, Kubasov IV, Lopatina EV (1994) A study of recovery of working ability of the fatugued rat diaphragm after application of exogenous acetylcholine. Physiol J IM Sechenov 80(9): 61–66. (In Russ).

    CAS  Google Scholar 

  5. Kubasov IV, Krivoi II, Lopatina EV (1994) Investigation of the effect of exogenous acetylcholine on the effectiveness of neuromuscular transmission in the fatigued rat diaphragm Bjull jeksper biol med 118(11): 457–459. (In Russ).

  6. Kubasov IV, Krivoi II, Lopatina EV (1997) The role of Na+, K+-ATPase in the presynaptic aftereffect of exogenous acetylcholine in the rat diaphragm. Bull Exp Biol Med 123(5): 531–534. https://doi.org/ 10.1007/BF02445319

    Article  CAS  Google Scholar 

  7. Krivoi II, Kravtsova VV, Lopatina EV (2000) Hyperpolarizing effect of acetylcholine in the skeletal muscle with different types of muscle fibers. J Evol Biochem Physiol 36(4): 491–494. https://doi.org/10.1007/BF02737001

    Article  CAS  Google Scholar 

  8. Krivoi II, Lopatina EV, Kravtsova VV (2001) Role of K+ channels and Na+,K+-ATPase in acetylcholine-induced hyperpolarization of skeletal muscle fibres. Biol Membr 18(1): 10–15. (In Russ).

    CAS  Google Scholar 

  9. Nikolsky EE, Zemková H, Voronin VA, Vyskocil F (1994) Role of non-quantal acetylcholine release in surplus polarization of mouse diaphragm fibers at the endplate zone. J Physiol 477 (Pt 3): 497–502. https://doi.org/10.1113/jphysiol.1994.sp020210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, Mathews WR, Ludens JH (1991) Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci USA 88(14): 6259–6263. https://doi.org/10.1073/pnas.88.14.6259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blaustein MP, Hamlyn JM (2020) Ouabain, Endogenous Ouabain and Ouabain-like Factors: The Na+ Pump/Ouabain Receptor, its linkage to NCX, and its Myriad Functions. Cell Calcium 86: 102159. https://doi.org/10.1016/j.ceca.2020.102159

    Article  CAS  PubMed  Google Scholar 

  12. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7(3): 173–189. https://doi.org/10.2165/00129784-200707030-00004

    Article  CAS  PubMed  Google Scholar 

  13. Akera TT, Brody M (1976) Inotropic action of digitalis and ion transport. Life Sci 18(2): 135–144. https://doi.org/10.1016/0024-3205(76)90017-5

    Article  CAS  PubMed  Google Scholar 

  14. Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci10: 2373–2396. https://doi.org/10.2741/1704

    Article  CAS  PubMed  Google Scholar 

  15. Cherniavsky LM, Karlish SJ, Garty H (2015) Cardiac glycosides induced toxicity in human cells expressing α1-, α2-, or α3-isoforms of Na-K-ATPase. Am J Physiol Cell Physiol 309(2): 126–135. https://doi.org/10.1152/ajpcell.00089.2015

    Article  CAS  Google Scholar 

  16. Lazarev NV (ed) (1961) Manual of Pharmacology; In 2 V. Medgiz, M. (In Russ).

    Google Scholar 

  17. Cui X, Xie Z (2017) Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 22(6): 1–20. https://doi.org/10.3390/molecules22060990

    Article  CAS  Google Scholar 

  18. Yu H, Cui X, Zhang J, Xie JX, Banerjee M, Pierre SV, Xie Z (2018) Heterogeneity of signal transduction by Na-K-ATPase alpha-isoforms: role of Src interaction. Am J Physiol Cell Physiol 314(2): 202–210. https://doi.org/10.1152/ajpcell.00124.2017

    Article  CAS  Google Scholar 

  19. Li Z, Cai T, Tian J, Xie J, Zhao X, Liu L, Shapiro JI, Xie Z (2009) NaKtide, a Na/K-ATPase-derived peptide Src inhibitor, antagonizes ouabain-activated signal transduction in cultured cells. J Biol Chemi 284(31): 21066–21076. https://doi.org/10.1074/jbc.M109.013821

    Article  CAS  Google Scholar 

  20. Wang Y, Ye Q, Liu C, Xie JX, Yan Y, Lai F, Duan Q, Li X, Tian J, Xie Z (2014) Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Rad Biol Med 71(31): 415–426. https://doi.org/10.1016/j.freeradbiomed.2014.03.036

    Article  CAS  PubMed  Google Scholar 

  21. Heiny JA, Kravtsova VV, Mandel F, Radzyukevich TL, Benziane B, Prokofiev AV, Pedersen SE, Chibalin AV, Krivoi II (2010) The nicotinic acetylcholine receptor and the Na,K-ATPase α2 isoform interact to regulate membrane electrogenesis in skeletal muscle. J Biol Chem 285: 28614–28626. https://doi.org/10.1074/jbc.M110.150961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chibalin AV, Heiny JA, Benziane B, Prokofiev AV, Vasiliev AN, Kravtsova VV, Krivoi II (2012) Chronic nicotine exposure modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS One 7: e33719. https://doi.org/10.1371/journal.pone.0033719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie Z, Xie J (2015) The Na/K-ATPase-mediated signal transduction as a target for new drug development. Front Biosci 10: 3100–3109. https://doi.org/10.2741/1766

    Article  Google Scholar 

  24. Nikolsky EE, Oranska TI, Vyskocil F (1996) Non-quantal acetylcholine release in the mouse diaphragm after phrenic nerve crush and during recovery. Exp Physiol 81(3): 341–348. https://doi.org/10.1113/expphysiol.1996.sp003938

    Article  CAS  PubMed  Google Scholar 

  25. Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Eaton MJ, Skatchkov SN, Mandel F (2006) On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase. Pflüg Arch Eur J Physiol 452(6): 756–765. https://doi.org/10.1007/s00424-006-0081-6

    Article  CAS  Google Scholar 

  26. Cisterna BA, Vargas AA, Puebla C (2020) Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun 11(1): 1073. https://doi.org/10.1038/s41467-019-14063-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer Eur J Biochem 269: 2434–2439. https://doi.org/10.1046/j.1432-1033.2002.02910.x

  28. Lopatina EV, Kipenko AV, Pasatetskaya N, Penniyaynen VA, Krylov BV (2016) Modulation of the transducer function of Na+,K+-ATPase: new mechanism of heart remodeling. Canad J Physiol Pharmacol 94(10): 1110–1116. https://doi.org/10.1139/cjpp-2015-0577

    Article  CAS  Google Scholar 

  29. Lopatina EV, Karetsky AV, Penniyaynen VA, Vinogradova TV (2008) Role of cardiac glycosides in regulation of the growth of retinal tissue explants. Bull Exp Biol Med 146(12): 651–653. https://doi.org/10.1007/s10517-009-0384-7

    Article  Google Scholar 

  30. Pennijajnen VA, Lopatina EV (2005) Role of Na/K-ATPase in regulation of neurite growth in sensory neurons. Bull Exp Biol Med 139(2): 190–192. https://doi.org/10.1007/s10517-005-0244-z

    Article  CAS  Google Scholar 

  31. Malomouzh AI, Nikolsky EE (2010) Non-quantal mediator release: myth or reality? Uspekhi Fiziol Nauk 41(2): 27–43. (In Russ).

    CAS  Google Scholar 

  32. Vyskočil F, Vrbova G (1993) Non-quantal release of acetylcholine affects polyneuronal innervation on developing rat muscle fibres. Eur J Neurosci 5: 1677–1683. https://doi.org/10.1111/j.1460-9568.1993.tb00235.x

    Article  PubMed  Google Scholar 

  33. Lopatina EV, Pennijajnen VA, Zajka AA (2005) Regulatory Role of Na,K-ATPase in the Growth of Heart Tissue Explants in Organotypic Culture. Bull Exp Biol Med 140(8): 150–153. https://doi.org/10.1007/s10517-005-0440-x

    Article  CAS  Google Scholar 

  34. Kotova O, Al-Khalili L, Talia S, Hooke C, Fedorova OV, Bagrov AY, Chibalin AV (2006) Cardiotonic steroids stimulate glycogen synthesis in human skeletal muscle cells via a Src- and ERK1/2-dependent mechanism. J Biol Chem 281(29): 20085–20094. https://doi.org/10.1074/jbc.M601577200

    Article  CAS  PubMed  Google Scholar 

  35. Pirkmajer S, Bezjak K, Matkovic U, Dolinar K, Jiang LQ, Mis K, Gros K, Milovanova K, Pirkmajer KP, Mars T, Kapilevich L, Chibalin AV (2020) Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 11: 1–50. eCollection 2020. https://doi.org/10.3389/fphys.2020.566584

    Article  Google Scholar 

  36. Oliveira TN, Possidonio AC, Soares CP, Ayres R, Costa ML, Quintas LE, Mermelstein C (2015) The role of Na+/K+-ATPase during chick skeletal myogenesis. PLoS One 10(3): e0120940. https://doi.org/10.1371/journal.pone.0120940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kravtsova VV, Matchkov VV, Bouzinova EV, Vasiliev AN, Razgovorova IA, Heiny JA, Krivoi II (2015) Isoform-specific Na,K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. Bio Med Res Int 2015: 1–11. https://doi.org/10.1155/2015/720172

    Article  CAS  Google Scholar 

  38. Lopatina EV, Poljakov JuI (2011) Synthetic analgesic anoceptin: results of preclinical and clinical studies. Jefferent Terapija 17(3): 79–81. (In Russ).

    Google Scholar 

Download references

Funding

The work was supported by the State Program 47 SP, Scientific and Technological Development of the Russian Federation (2019–2030); Theme 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the concept, experimental design, data collection and processing, as well as manuscript preparation. All authors read and approved the final article’s version before submission.

Corresponding author

Correspondence to E. V. Lopatina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All the animal-involving experimental procedures complied with ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration, and the recommendations of the Bioethics Committee at the Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 2, pp. 229–240https://doi.org/10.31857/S0869813923020073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatina, E.V., Gavrichenko, A.V. & Pasatetskaya, N.A. Involvement of Acetylcholine and Na+,K+-ATPase in the Regulation of Skeletal Muscle Growth in a Chicken Embryo. J Evol Biochem Phys 59, 285–292 (2023). https://doi.org/10.1134/S0022093023010234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023010234

Keywords:

Navigation