Skip to main content
Log in

Activity of the hypothalamic–pituitary–adrenal axis of prenatally stressed male rats in experimental model of depression

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Changes in activity of the hypothalamic–pituitary–adrenal (HPA) axis were examined in adult, prenatally stressed male rats in the experimental depression model of ‘learned helplessness’. It was shown that in males descending from intact mothers a depressive-like state was accompanied by an increase in activity of the entire HPA axis. Namely, expression of corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) increased coupled to a rise in plasma levels of ACTH and corticosterone as well as in adrenal weight. At the same time, in males born to mothers who suffered stress during the last week of pregnancy a decrease was detected in activity both of the central (hypothalamus) and peripheral (adrenal cortex) parts of this regulatory hormonal axis, analogous to that we revealed previously in the ‘stress–restress’ experimental model. It is concluded that prenatal stress modifies the sensitivity of animals to inescapable intense stress impacts, as manifested in the specific pattern of HPA axis activity after stressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makham, J.A. and Koenig, J.I., Prenatal stress: role in psychotic and depressive diseases, Psychopharmacology (Berl.), 2011, vol. 214, pp. 89–106.

    Article  Google Scholar 

  2. Swanson, J.M., Entringer, S., Buss, C., and Wadhwa, P.D., Developmental origins of health and disease: environmental exposures, Semin. Reprod. Med., 2009, vol. 27, pp. 391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van den Bergh, B.R.H., Calster, B.V., Smits, T., Van Huffel, S., and Lagae, L., Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood, Neuropsychopharmacol., 2008, vol. 33, pp. 536–545.

    Article  Google Scholar 

  4. Weinstock, M., Intrauterine factors as determinants of depressive disorder, Isr. J. Psychiatry Relat. Sci., 2010, vol. 47, pp. 36–45.

    PubMed  Google Scholar 

  5. Raposa, E., Hammen, C., Brennan, P., and Najman, J., The long-term effects of maternal depression: early childhood physical health as a pathway to offspring depression, J. Adolesc Health., 2014, vol. 54. pp. 88–93.

    Article  PubMed  Google Scholar 

  6. Glover, V., Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms, Adv. Neurobiol., 2015, vol. 10, pp. 269–283.

    Article  PubMed  Google Scholar 

  7. Baker, S.L., Mileva, G., Huta, V., and Bielajew, C., In utero programming alters adult response to chronic mild stress: Part 3 of a longitudinal study, Brain Res., 2014, vol. 1588, pp. 175–189.

    Article  CAS  PubMed  Google Scholar 

  8. Mairesse, J., Van Camp, G., Gatta, E., Marrocco, J., Reynaert, M.L., Consolazione, M., Morley-Fletcher, S., Nicoletti, F., and Maccari, S., Sleep in prenatally restraint stressed rats, a model of mixed anxiety-depressive disorder, Adv. Neurobiol., 2015, vol. 10, pp. 27–44.

    PubMed  Google Scholar 

  9. Weinstock, M., Changes induced by prenatal stress in behavior and brain morphology: can they be prevented or reversed? Adv. Neurobiol., 2015, vol. 10, pp. 3–25.

    Article  PubMed  Google Scholar 

  10. Frodl, T. and O’Keane, V., How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans, Neurobiol. Dis., 2013, vol. 52, pp. 24–37.

    PubMed  Google Scholar 

  11. Pariante, C.M., Risk factors for development of depression and psychosis, Ann. N. Y. Acad. Sci., 2009, vol. 1179, pp. 144–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grigoryan, G.A., Dygalo, N.N., Gekht, A. B., Stepanichev, M.Yu., and Gulyaeva, N.V., Molecular-cellular mechanisms of depression. The role of glucorticoids, cytokines, neurotransmitters and trophic factors in genesis of depressive disorders, Uspekhi Fiziol. Nauk, 2014, vol. 45, pp. 3–19.

    CAS  Google Scholar 

  13. Pariante, C.M. and Lightman, S.L., The HPA axis in major depression: classical theories and new developments, Trends Neurosci., 2008, vol. 39, pp. 464–468.

    Article  Google Scholar 

  14. Pariante, C.M. and Miller, A.H., Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment, Biol. Psychiatry, 2001, vol. 49, pp. 391–404.

    Article  CAS  PubMed  Google Scholar 

  15. Schüle, C., Baghai, T.C., Eser, D., Häfner, S., Born, C., Herrmann, S., and Rupprecht, R., The combined dexamethasone/CRH Test (DEX/CRH test) and prediction of acute treatment response in major depression, PLoS One, 2009, vol. 4, e4324.

  16. Smith, K.M., The diagnosis of depression: current and emerging methods, Compr. Psychiatry, 2013, vol. 54, pp. 1–6.

    Article  PubMed  Google Scholar 

  17. Fountoulakis, K.N., Gonda, X., Rihmer, Z., Fokas, C., and Iacovides, A., Revisiting the Dexamethasone Suppression Test in unipolar major depression: an exploratory study, Ann. Gen Psychiatry, 2008, vol. 7: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stepanichev, M., Dygalo, N.N., Grigoryan, G., Shishkina, G.T., and Gulyaeva, N., Rodent models of depression: neurotrophic and neuroinflammatory biomarkers, BioMed. Res. Intern., 2014, vol. 2014, Article ID932757.

  19. Pivina, S.G., Rakitskaya, V.V., Smolensky, I.V., Akulova, V.K., and Ordyan, N.E., Modification of neurohormones expression in hypothalamus of male rats experienced prenatal stress in the model of posttraumatic stress disorder, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, pp. 305–311.

    CAS  PubMed  Google Scholar 

  20. LoLordo, V.M., Learned helplessness and depression, Animal Research and Human Health, Carroll, M.E., Overmier, J.B., and Washington, D.C., Eds., Am. Psychol. Assoc., 2001, pp. 63–77.

    Google Scholar 

  21. Zhukov, D.A., The reflection of adaptive component of rat’s behavior in reaction of pituitary–adrenal system to dexamethasone, Fiziol. Zh. im. I.M. Sechenova, 1990, vol. 76, pp. 1090–1098.

    CAS  Google Scholar 

  22. Maric, N.P. and Adzic, M., Pharmacological modulation of HPA axis in depression—new avenues for potential therapeutic benefits, Psychiatr. Danub., 2013, vol. 25, pp. 299–305.

    CAS  PubMed  Google Scholar 

  23. Renoi, T., Pang, T.Y., and Lanfumey, L., Drug withdrawal-induced depression: serotonergic and plasticity changes in animal models, Neurosci. Biobehav. Rev., 2012, vol. 36, pp. 696–726.

    Article  Google Scholar 

  24. Avgustinovich, D.F., Alekseyenko, O.V., Bakshtanovskaya, I.V., Koryakina, L.A., Lipina, T.V., Tenditnik, M.V., Bondar, N.P., Kovalenko, I.L., and Kudryavtseva, N.N., Dynamic changes of seroninergic and dopaminergic brain activity in process of anxious depression development: experimental investigation, Uspekhi Fiziol. Nauk, 2004, vol. 35, pp. 19–40.

    CAS  Google Scholar 

  25. Wiborg, O., Chronic mild stress for modeling anhedonia, Cell Tissue Res., 2013, vol. 354, pp. 155–169.

    Article  PubMed  Google Scholar 

  26. El Khoury, A., Gruber, S.H., Mork, A., and Mathe, A.A., Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, vol. 30, pp. 535–540.

    Article  PubMed  Google Scholar 

  27. Mironova, V., Pivina, S.G., and Rybnikova, E., Effect of inescapable stress in rodent models of depression and posttraumatic stress disorder on CRH and vasopressin immunoreactivity in the hypothalamic paraventricular nucleus, Acta Physiologica Hungarica, 2013, vol. 100, pp. 395–410.

    Article  CAS  PubMed  Google Scholar 

  28. Liberzon, I., Krstov, M., and Young, E.A., Stress–restress: effects on ACTH and fast feedback, Psychoneuroendocrinol., 1997, vol. 22, pp. 443–453.

    Article  CAS  Google Scholar 

  29. Yehuda, R. and Antelman, S.M., Criteria for evaluating animal models of posttraumatic stress disorder, Biol. Psychiatry, 1993, vol. 33, pp. 479–486.

    Article  CAS  PubMed  Google Scholar 

  30. Yehuda, R. and Seckl, J., Stress-related psychiatric disorders with low cortisol levels: a metabolic hypothesis, Endocrinology, 2011, vol. 152, pp. 4496–4503.

    Article  CAS  PubMed  Google Scholar 

  31. Ordyan, N.E. and Pivina, S.G., The characteristics of behavior and pituitary–adrenal system responsiveness to stress in rats experienced prenatal stress, Ros. Fiziol. Zh. im. I.M. Sechenova, 2003, vol. 89, pp. 52–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Ordyan.

Additional information

Original Russian Text © N.E. Ordyan, S.G. Pivina, V.V. Rakitskaya, V.K. Akulova, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 1, pp. 51—57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordyan, N.E., Pivina, S.G., Rakitskaya, V.V. et al. Activity of the hypothalamic–pituitary–adrenal axis of prenatally stressed male rats in experimental model of depression. J Evol Biochem Phys 52, 56–63 (2016). https://doi.org/10.1134/S0022093016010063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016010063

Keywords

Navigation