Skip to main content
Log in

Study of conformational mobility of insulin, proinsulin, and insulin-like growth factors

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The goal of the work was to perform by the method of molecular dynamics a comparative analysis of conformational mobility of evolutionary related peptides—insulin, proinsulin, IGF1, and IGF2. The proinsulin molecule has been shown to have the highest mobility, whereas IGF1—the lowest. Rotation radius (Rg) of insulin, IGF1, and IGF2 changes insignificantly, Rg of proinsulin decreases by reaching plateau after 6000 ps. The graphs of the mean square deviations (RMSD) from initial positions for A- and B-domains are practically identical, which indicates integrity of the carcass formed by A- and B-domains. The proinsulin C-domain behaves sufficiently chaotically. The IGF1 and IGF2 C-domains form ordered structures resembling horseshoe and an elongated hairpin. The D-domain makes the greatest contribution to the IGF2 mobility, but remains virtually immobile in IGF1, which might be the cause of high IGF1 stability. The obtained data can be used in development of new effective drugs for treatment of diabetes mellitus, which are based on the principle of evolutionary relationship of peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claeys, I., Simonet, G., Poels, J., Van Loy, T., Vercammen, L., De Loof, A., and Broek, J., Insulin-Related Peptides and Their Conserved Signal Transduction Pathway, Peptides, 2002, vol. 23, pp. 807–816.

    Article  CAS  PubMed  Google Scholar 

  2. Steiner, D.F., Chan, S.J., Welsh, J.M., and Kwok, S.C.M., Structure and Evolution of the Insulin Gene, Ann. Rev. Genet., 1985, vol. 19, pp. 463–484.

    Article  CAS  PubMed  Google Scholar 

  3. Russo, V.C., Gluckman, P.D., Feldman, E.L., and Werther, G.A., The Insulin-Like Growth Factor System and Its Pleiotropic Functions in Brain, Endocrine Reviews, 2005, vol. 26, pp. 916–943.

    Article  CAS  PubMed  Google Scholar 

  4. Hua, Q., Mayer, J.P., Jia, W., Zhang, J., and Weiss, M.A., The Folding Nucleus of the Insulin Superfamily. A Flexible Peptide Model Foreshadows the Native State, J. Biol. Chem., 2006, vol. 281, pp. 28131–28142.

    Article  CAS  PubMed  Google Scholar 

  5. Chan, S.J. and Steiner, D.F., Insulin Through the Ages: Phylogeny of a Growth Promoting and Metabolic Regulatory Hormone, Amer. Zool., 2000, vol. 40, pp. 213–222.

    Article  CAS  Google Scholar 

  6. Oyadomari, S. and Mori, M., Roles of CHOP/GADD 153 in Endoplasmic Reticulum, Cell Death Differ., 2004, vol. 11, pp. 381–389.

    Article  CAS  PubMed  Google Scholar 

  7. Hua, Q., Chu, Y., Jia, W., Phillips, N.F.B., Wang, R., Katsoyannis, P.G., and Weiss, M.A., Mechanism of Insulin Chain Combination. Asymmetric Roles of A-Chain α-Helices in Disulfide Pairing, J. Biol. Chem., 2002, vol. 277, pp. 43443–43453.

    Article  CAS  PubMed  Google Scholar 

  8. Woerle, H.J., Mariuz, P.R., Meyer, C., Reichman, R.C., Popa, E.M., Dostou, J.M., Welle, S.L., and Gerich, J.E., Mechanism for the Deterioration in Glucose Tolerance Associated with HIV Protease Inhibitor Regimens, Diabetes, 2003, vol. 52, pp. 918–925.

    Article  CAS  PubMed  Google Scholar 

  9. Tura, A., Ludvik, B., Nolan, J.J., Pacini, G., and Thomaseth, K., Insulin and C-Peptide Secretion and Kinetics in Humans: Direct and Model-Based Measurements During OGTT, Am. J. Physiol. Endocrinol. Metab., 2001, vol. 281, pp. 966–974.

    Google Scholar 

  10. Hanefeld, M., Koehler, C., Fuecker, K., Henkel, E., Schaper, F., and Temelkova-Kurktschiev, T., Insulin Secretion and Insulin Sensitivity Pattern Is Different in Isolated Impaired Glucose Tolerance and Impaired Fasting Glucose. The Risk Factor in Impaired Glucose Tolerance for Atherosclerosis and Diabetes Study, Diabetes Care, 2003, vol. 26, pp. 868–874.

    Article  CAS  PubMed  Google Scholar 

  11. Vezzosi, D., Bennet, A., Fauvel, J., and Caron, P., Insulin, C-peptide and Proinsulin for the Biochemical Diagnosis of Hypoglycaemia Related to Endogenous Hyperinsulinism, Europ. J. Endocrinol., 2007, vol. 157, pp. 75–83.

    Article  CAS  Google Scholar 

  12. Hwanga, D.L., Huanga, S., Lanb, W., and Leec, P.D.K., Elevated Insulin, Proinsulin and Insulin-Like Growth Factor-Binding Protein-1 in Liver Disease, Growth Hormone and IGF Research, 2003, vol. 13, pp. 316–321.

    Article  Google Scholar 

  13. Hadjidakis, D.J. and Raptis, S.A., Proinsulin as a Possible Therapeutic Agent, Horm. Metab. Res. Suppl., 1992, vol. 26, pp. 131–137.

    CAS  PubMed  Google Scholar 

  14. Fineberg, S.E., Rathbun, M.J., Fineberg, N.S., Spradlin, C.T., Galloway, J.A., and Frank, B.H., Immunologic Aspects of Human Proinsulin Therapy, Diabetes, 1988, vol. 37, pp. 276–280.

    Article  CAS  PubMed  Google Scholar 

  15. Clemmons. D.R.. Modifying IGF1 Activity: an Approach to Treat Endocrine Disorders, Atherosclerosis and Cancer, Nature Rev. Drug Discov., 2007, vol. 6, pp. 821–833.

    Article  CAS  Google Scholar 

  16. Ranke, M.B., Insulin-Like Growth Factor-I Treatment of Growth Disorders, Diabetes Mellitus and Insulin Resistance, TRENDS in Endocrinol. Metab., 2005, vol. 16, pp. 190–197.

    Article  CAS  Google Scholar 

  17. Hirsch, I.B., Insulin Analogues, N. Engl. J. Med., 2005, vol. 352, pp. 174–183.

    Article  CAS  PubMed  Google Scholar 

  18. Hess, B., Kutzner, C., Spoel, D., and Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulations, J. Chem. Theory Comput., 2008, vol. 4, pp. 435–447.

    Article  CAS  Google Scholar 

  19. Humphrey, W., Dalke, A., and Schulten, K., VMD—Visual Molecular Dynamics, J. Molec. Graphics., 1996, vol. 14, pp. 33–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Ksenofontova.

Additional information

Original Russian Text © O.I. Ksenofontova, E.V. Romanovskaya, V.E. Stefanov, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 1, pp. 38–43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksenofontova, O.I., Romanovskaya, E.V. & Stefanov, V.E. Study of conformational mobility of insulin, proinsulin, and insulin-like growth factors. J Evol Biochem Phys 50, 42–48 (2014). https://doi.org/10.1134/S002209301401006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209301401006X

Key words

Navigation