Skip to main content
Log in

Morphogenesis and reaction to hypoxia of atrial myoendocrine cells in chick embryos (Gallus gallus)

  • Morphological Basics for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Ultrastructural and stereomorphometric study of the chick embryo right atrium at the 14th day of incubation has shown cardiomyocytes to divide mitotically and to be at different stages of differentiation. The cytoplasm of some muscle cells contains secretory granules that by sizes and morphology can be classified as formed, mature, and dissolved forms. By the 18th day of incubation the majority of cardiomyocytes is already differentiated, and the amount of their secretory granules increases. Under conditions of hypoxia, after three days, in myoendocrine cells there are noted features of accelerated secretion of the peptides that are synthesized earlier and are accumulate in the granules, while after one weak—features of acceleration of their synthesis. It can be concluded that in chick embryos, at least from the 14th day of incubation, the system of the heart natriuretic peptides participates in regulation of hemodynamics and of water—salt balance and responds to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Bold, A.J., Borenstein, H.B., Veress, A.T., and Sonnenberg, H., A Rapid and Potent Natriuretic Response to Intravenous Injection of Atrial Myocardial Extract in Rats, Life. Sci., 1981, vol. 28, pp. 89–94.

    Article  PubMed  Google Scholar 

  2. Cameron, V.A. and Ellmers, L.J., Minireview: Natriuretic Peptides during Development of the Fetal Heart and Circulation, Endocrinology, 2003, vol. 144, no. 6, pp. 2191–2194.

    Article  PubMed  CAS  Google Scholar 

  3. Stephenson, T.J. and Pipkin, F.B., Atrial Natriuretic Factor: the Heart as an Endocrine Organ, Arch. Dis. Child., 1990, vol. 65, pp. 1293–1294.

    Article  PubMed  CAS  Google Scholar 

  4. Walther, T., Schultheiss, H.P., Tschope, C., and Stepan, H., Natriuretic Peptide System in Fetal Heart and Circulation, J. Hypertens., 2002, vol. 20, no. 5, pp. 801–803.

    Article  Google Scholar 

  5. Inoue, K. and Takei, Y., Molecular Evolution of the Natriuretic Peptide System as Revealed by Comparative Genomics, Comp. Biochem. Physiol. Part D: Genomics and Proteomics, 2006, vol. 1, no. 1, pp. 69–76.

    Article  Google Scholar 

  6. Takei, Y., Inoue, K., Trajanovska, S., and Donald, J., B-Type Natriuretic Peptide (BNP), Not ANP, Is the Principal Cardiac Natriuretic Peptide in Vertebrates as Revealed by Comparative Studies, Gen. Comp. Endocrinol., 2011, vol. 171, no. 3, pp. 258–266.

    Article  PubMed  CAS  Google Scholar 

  7. Takle, H., Baeverfjord, G., Helland, S., Kjorsvik, E., and Andersen, O., Hyperthermia Induced Atrial Natriuretic Peptide Expression and Deviant Heart Development in Secretory Granules of Atlantic Salmon Salmo salar Embryos, Gen. Comp. Endocrinol., 2006, vol. 147, no. 2, pp. 118–125.

    Article  PubMed  CAS  Google Scholar 

  8. Krylova, M.I., Chemogranin A: Immunocytochemical Localization in Frog Atrium Cardiomyocytes, Tsitologiya, 2007, vol. 49, no.7, pp. 538–543.

    CAS  Google Scholar 

  9. Reinhart, G.A. and Zehr, J.E., Atrial Natriuretic Factor in the Freshwater Turtle Pseudemys scripta: a Partial Characterization, Gen. Comp. Endocrinol., 1994, vol. 96, no. 2, pp. 259–269.

    Article  PubMed  CAS  Google Scholar 

  10. Trajanovska, S., Inoue, K., Takei, Y., and Donald, J.A., Genomic Analyses and Cloning of Novel Chicken Natriuretic Peptide Genes Reveal New Insights into Natriuretic Peptide Evolution, Peptides, 2007, vol. 28, no. 11, pp. 2155–2163.

    Article  PubMed  CAS  Google Scholar 

  11. Trajanovska, S. and Donald, J.A., Molecular Cloning of Natriuretic Peptides from the Heart of Reptiles: Loss of ANP in Diapsid Reptiles and Birds, Gen. Comp. Endocrinol., 2008, vol. 156, no. 2, pp. 339–346.

    Article  PubMed  CAS  Google Scholar 

  12. Orlov, M.V., Biologicheskii control’ v inkubatsii (Biological Control in Incubation), Moscow, 1987.

    Google Scholar 

  13. Fisinin, V.I., Zhuravlev, I.V., and Aidinyan, T.G., Embrional’noe razvitie ptitsy (Embryonic Bird Development), Moscow, 1990.

    Google Scholar 

  14. Avramovitch, N., Hoffman, A., Winaver, J., Haramati, A., and Lewinson, D., Morphometric Analysis of Atrial Natriuretic Peptide-Containing Granules in Atriocytes of Rats with Experimental Congestive Heart Failure, Cell. Tissue Res., 1995, vol. 279, no. 3, pp. 575–583.

    Article  PubMed  CAS  Google Scholar 

  15. Rakhcheeva, M.L., Bugrova, M.L., Mukhina, I.V., and Zhabereva, A.S., Role of Atrial Natriuretic Peptide in Regulation of Arterial Pressure under Unilateral Renal Ischemia in Rats Vestnik Nizhegorod. Univer. im. N.I. Lobachevskogo, 2009, vol. 6, no. 1, pp. 132–136.

    Google Scholar 

  16. Keller, B.B., MacLennan, M.J., Tinney, J.P., and Yoshigi, M., In vivo Assessment of Embryonic Cardiovascular Dimensions and Function in Day-10.5 to 14.5-Mouse Embryos, Circulation Res., 1996, vol. 79, pp. 247–255.

    Article  PubMed  CAS  Google Scholar 

  17. Mifune, H., Suzuki, S., Noda, Y., Mohri, S., and Mochizuki, K., Fine Structure of Atrial Natriuretic Peptide (ANP)-Granules in the Atrial Cardiocytes of the Mouse, Rat and Mongolian Gerbil, Jikken Dobutsu, 1991, vol. 40, no. 2, pp. 183–193.

    PubMed  CAS  Google Scholar 

  18. Ruijtenbeek, K., DeMey, J.G.R., and Blanko, C.E., The Chicken Embryo in Developmental Physiology of the Cardiovascular System: a Traditional Model with New Possibilities, Am. J. Physiol., 2002, vol. 282, pp. R331–R333.

    Google Scholar 

  19. Ruijtenbeek, K., Kessels, L.C.G.A., De-Mey, J.G.R., and Blanko, C.E., Chronic Moderate Hypoxia and Protein Malnutrition Both Induce Growth Retardation, but Have Distinct Effects on Arterial Endothelium-Dependent Reactivity in the Chicken Embryo, Pediatr. Res., 2003, vol. 53, no. 4, pp. 573–579.

    Article  PubMed  Google Scholar 

  20. Villamor, E., Kessels, C.G., Ruijtenbeek, K., van Suylen, R.J., Belik, J., de Mey, J.G., and Blanco, C.E., Chronic in ovo Hypoxia Decreases Pulmonary Arterial Contractile Reactivity and Induces Biventricular Cardiac Enlargement in the Chicken Embryo, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, vol. 287, no. 3, pp. R642–R651.

    Article  PubMed  CAS  Google Scholar 

  21. Möllmann, H., Nef, H.M., Kostin, S., Dragu, A., Maack, C., Weber, M., Troidl, C., Rolf, A., Elsässer, A., Böhm, M., Brantner, R., Hamm, C.W., and Holubarsch, C.J., Ischemia Triggers BNP Expression in the Human Myocardium Independent from Mechanical Stress, Int. J. Cardiol., 2010, vol. 143, no. 3, pp. 289–297.

    Article  PubMed  Google Scholar 

  22. Goetze, J.P., Biosynthesis of Cardiac Natriuretic Peptides. Results and Problems in Cell Differentiation, Springer-Verlag, 2009.

    Google Scholar 

  23. Maksimov, V.F. and Korostyshevskaya, I.M., Development of Chick Embryo Myocardium at Restriction of External Respiration, Morfologiya, 2009, vol. 135, no. 2, pp. 38–42.

    CAS  Google Scholar 

  24. Maksimov, V.F. and Korostyshevskaya, I.M., Development of the Chick Embryo Gas-Transport Systems under Conditions of Restriction of Egg Respiratory Surface, Ross. Fiziol. Zh. im. I.M. Sechenova, 2007, vol. 93, no. 12, pp. 1413–1422.

    PubMed  CAS  Google Scholar 

  25. Korostyshevskaya, I.M. and Maksimov, V.F., How Survives Chick Embryo after Closing the Half of Shell?, Ontogenesis, 2009, vol. 40, no. 2, pp. 48–61.

    Google Scholar 

  26. Bonow, R.O., New Insights into the Cardiac Natriuretic Peptides, Circulation, 1996, vol. 93, pp. 1946–1950.

    Article  PubMed  CAS  Google Scholar 

  27. Goetze, J.P., Kastrup, J., and Rehfeld, J.F. The Paradox of Increased Natriuretic Hormones in Congestive Heart Failure Patients: Does the Endocrine Heart Also Fail in Heart Failure?, Eur. Heart. J., 2003, vol. 24, pp. 1471–1472.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Korostyshevskaya.

Additional information

Original Russian Text © V.F. Maksimov, I.M. Korostyshevskaya, 2012, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2012, Vol. 48, No. 5, pp. 502–508.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, V.F., Korostyshevskaya, I.M. Morphogenesis and reaction to hypoxia of atrial myoendocrine cells in chick embryos (Gallus gallus). J Evol Biochem Phys 49, 251–258 (2013). https://doi.org/10.1134/S0022093013020151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013020151

Key words

Navigation