Skip to main content
Log in

Role of creatine kinase and its substrates in the central nervous system in norm and in various pathologies

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

There is presented review of recent publications providing current understanding of role of creatine kinase-creatine phosphate system and creatine, substrate of creatine kinase, in metabolism of cell and specifically of cells of the central nervous system. Particularly noted are the protector role of creatine at mitochondrial and bioenergetic cell dysfunction and potential significance of creatine bioadditions at treatment of neurodegenerative and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhihetty, P.J. and Beal, M.F., Creatine and its Potential Therapeutic Value for Targeting Energy Impairment in Neurodegenerative Diseases, Neuromol. Med., 2008, vol. 10, pp. 275–290.

    Article  CAS  Google Scholar 

  2. Andres, R.H., Ducray, A.D., Schlattner, U., Wallimann, T., and Widmer, H.R., Functions and Effects of Creatine in the Central Nervous System, Brain Res. Bull., 2008, vol. 76, no. 4, pp. 329–343.

    Article  PubMed  CAS  Google Scholar 

  3. Burklen, T.S., Schlattner, U., Homayouni, R., Gough, K., Rak, M., Szeghalmi, A., and Wallimann, T., The Creatine Kinase/Creatine Connection to Alzheimer’s Disease: CK-Inactivation APP-CK Complexes and Focal Creatine Deposits, J. Biomed. Biotech., 2006, vol. 2006, p. 111.

    Article  Google Scholar 

  4. Brustovetsky, N., Brustovetsky, T., and Dubinsky, J.M., On the Mechanisms of Neuroprotection by Creatine and Phosphocreatine, J. Neurochem., 2001, vol. 76, pp. 425–434.

    Article  PubMed  CAS  Google Scholar 

  5. Brewer, G.J. and Wallimann, T., Protective Effect of the Energy Precursor Creatine Against Toxicity of Glutamate and Beta-Amyloid in Rat Hippocampal Neurons, J. Neurochem., 2000, vol. 74, pp. 1968–1978.

    Article  PubMed  CAS  Google Scholar 

  6. Aksenov, M., Aksenova, M., Butterfield, D.A., and Markesbery, W.R., Oxidative Modification of Creatine Kinase BB in Alzheimer’s Disease Brain, J. Neurochem., 2000, vol. 74, pp. 2520–2527.

    Article  PubMed  CAS  Google Scholar 

  7. Aksenova, M., Butterfield, D.A., Zhang, Sh.X., Underwood, M., and Geddes, J.W., Increased Protein Oxidation and Decreased Creatine Kinase BB Expression and Activity After Spinal Cord Contusion Injury, J. Neurotrauma, 2002, vol. 19, pp. 4–21.

    Article  Google Scholar 

  8. Adcock, K.H., Nedelcu, J., Loenneker, T., Wallimann, T., and Wagner, B.P., Neuroprotection of Creatine Supplementation in Neonatal Rats with Transient Cerebral Hypoxia-Ischemia, Dev. Neurosci., 2002, vol. 24, pp. 382–388.

    Article  PubMed  CAS  Google Scholar 

  9. Almeida, L.S., Salomonas, G..S., Hogenboom, F., Jakobs, C., and Schoffelmeer, A.N., Exocytotic Release of Creative in Rat Brain, Synapse, 2006, vol. 60, pp. 118–123.

    Article  PubMed  CAS  Google Scholar 

  10. Kay, L., Nicolay, K., Wieringa, B., Saks, V., and Wallimannm, T., Direct Evidence for the Control of Mitochondrial Respiratory by Mitochondrial Creatine Kinase in Oxidative Muscle Cells in situ, J. Biol. Chem., 2000, vol. 275, pp. 6937–6944.

    Article  PubMed  CAS  Google Scholar 

  11. Creatine and Creatine Kinase in Health and Disease, Salomons, G.S. and Wyss, M., Eds., Springer, Netherlands, 2007.

    Google Scholar 

  12. Molecular System Bioenergetics. Energy for Life, Saks, V.A., Ed., Weinbeiner, 2007.

  13. Creatine Kinase—Biochemistry, Physiology, Structure and Function, Vial, C. and Uversky, V.N., Eds., N.-Y., 2006.

  14. Browne, S.E. and Beal, M.F., Oxidative Damage and Mitochondrial Dysfunction in Neurodegenerative Diseases, Biochem. Soc. Trans., 1994, vol. 22, pp. 1002–1006.

    PubMed  CAS  Google Scholar 

  15. Lyzlova, S.N. and Stefanov, W.E., Phosphagen Kinases, Boston, 1991.

  16. Lipskaya, T.Yu., Physiological Role of Creatine Kinase System: Evolution of Conceptions, Biokhimiya, 2001, vol. 66, pp. 149–166.

    Google Scholar 

  17. Wallimann, T., Dolder, M., Schlattner, U., Eder, M., Hornemann, T., O’Gorman, E., Ruck, A., and Brdiczka, D., Some New Aspects of Creatine Kinase (CK): Compartmentation, Structure, Function and Regulation for Cellular and Mitochondrial Bioenergetics and Physiology, Bio-Factors, 1998, vol. 8, pp. 229–234.

    CAS  Google Scholar 

  18. Hemmer, W. and Wallimann, T., Creatine Kinase in Non-Muscle Tissues and Cells, Mol. Cell. Biochem., 1994, vol. 133/134, pp. 193–220.

    Article  Google Scholar 

  19. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M., Intracellular Compartmentation, Structure and Function of Creatine Kinase Isoenzymes in Tissues with High and Fluctuating Energy Demands: the “Phosphocreatine Circuit” for Cellular Energy Homeostasis, Biochem. J., 1992, vol. 281, pp. 21–40.

    PubMed  CAS  Google Scholar 

  20. Avicena, http://www.avicenagroup.com/

  21. Wallimann, T., Schlattner, U., Guerrero, L., and Dolder, M., The Phosphocreatine Circuit and Creatine Supplementation, Both Come of Age!, Guanidine Compounds in Biology and Medicine, Mori, A., Ishida, M., and Clark, J.F., Eds., Eastleigh, 1999, pp. 117–129.

  22. Shefner, J.M., Cudkowicz, M.E., Schoenfeld, D., Conrad, T., Taft, J., Chilton, M., Urbinelli, L., Qureshi, M., Zhang, H., Pestronk, A., Caress, J., Donofrio, P., Sorenson, E., Bradley, W., Lomen-Hoerth, C., Pioro, E., Rezania, K., Ross, M., Pascuzzi, R., Heiman-Patterson, T., Tandan, R., Mitsumoto, H., Rothstein, J., Smith-Palmer, T., MacDonald, D., Burke, D., and the NEALS Consortium, A Clinical Trial of Creatine in ALS, Neurology, 2004, vol. 63, pp. 1656–1661.

    PubMed  CAS  Google Scholar 

  23. Neumann, D., Schlattner, U., and Wallimann, T., A Molecular Approach to the Concerted Action of Kinase Involved in Energy Homoeostasis, Biochem. Soc. Trans., 2003, vol. 31,pt. 1, pp. 169–174.

    PubMed  CAS  Google Scholar 

  24. Bessman, S.P. and Carpenter, C.L., The Creatine-Creatine Phosphate Energy Shuttle, Annu. Rev. Biochem., 1985, vol. 54, pp. 831–862.

    Article  PubMed  CAS  Google Scholar 

  25. Wallimann, T., Schlosser, T., and Eppenberger, H.M., Function of M-Line-Bound Creatine Kinase as Intramyofibrillar ATP Regeneration at the Receiving End of the Phosphocreatine Shuttle in Muscle, J. Biol. Chem., 1984, vol. 259, pp. 5238–5246.

    PubMed  CAS  Google Scholar 

  26. Krause, S.M. and Jacobus, W.E., Specific Enhancement of the Cardiac Myofibrillar ATPase by Bound Creatine Kinase, J. Biol. Chem., vol. 267, pp. 2480–2486.

  27. Korge, P. and Byrds, S.K., Functional Coupling Between Sacroplasmic Reticulum Bound Creatine Kinase and Ca2+-ATPase, Eur. J. Biochem., 1993, vol. 213, pp. 973–980.

    Article  PubMed  CAS  Google Scholar 

  28. Grosse, R., Spitzer, E., Kupriyanow, V.V., Saks, V.A., and Repke, K.P., Coordinate Interplay Between (Na+/K+ATPase) and Creatine Phosphokinase Optimizes (Na+/K+)-Antiport Across the Membrane of Vesicles Formed from the Plasma membrane of Cardiac Muscle Cell, Biochem. Biophys. Acta, 1980, vol. 603, pp. 142–156.

    Article  PubMed  CAS  Google Scholar 

  29. Barrantes, F.J., Braceras, A., Caldironi, H., Mieskes, G., and Moser, H., Isolation and Characterization of Acetylcholine Receptor Membrane-Associated (Nonreceptor v2-Protein) and Soluble Electrocyte Creatine Kinases, J. Biol. Chem., 1985, vol. 260, pp. 3024–3034.

    PubMed  CAS  Google Scholar 

  30. Lim, L., Hall, C., Leung, T., Mahadevan, L., and Whatley, S., Neurospecific Enolase and Creatine Phosphokinase Are Protein Components of Rat Brain Synaptic Plasma Membranes, J. Neurochem., 1983, vol. 41, pp. 1177–1182.

    Article  PubMed  CAS  Google Scholar 

  31. Schlattner, U., Tokarska-Schlattner, M., and Wallimann, T., Mitochondrial Creatine Kinase in Human Health and Disease, Biochim. Biophys. Acta, 2006, vol. 1762, pp. 165–180.

    Google Scholar 

  32. Wallimann, T.Ch., Introduction—Creatine: Cheap Ergogenic Supplement with Great Potential for Health and Disease, Creatine and Creatine Ki nase in Health and Disease, Salomons, G.S. and Wyss, M., Eds., Springer, Netherlands, 2007, pp. 1–16.

    Chapter  Google Scholar 

  33. Schlattner, U., Tokarska-Schlattner, M., and Wallimann, T., Molecular Structure and Function of Mitochondrial Creatine Kinase, Creatine Kinase-Biochemistry, Physiology, Structure and Function, Vial, C. and Overskirt, V.N., Eds., New York, 2006, pp. 123–170.

  34. Dolder, M., Wale, B., Speer, O., Schlattner, U., and Wallimann, T., Inhibition of the Mitochondrial Permeability Transition by Creatine Kinase Substrates. Requirement for Microcompartmentation, J. Biol. Chem., 2003, vol. 278, pp. 17 760–17 766.

    Article  CAS  Google Scholar 

  35. Ponticos, M., Lu, Q.L., Morgan, J.E., Hardie, D.G., Partridge, T.A., and Carling, D., Dual Regulation of AMP-Activated protein Kinase Provides a Novel Mechanism for the Control of Creatine Kinase in Skeletal Muscle, EMBO J., 1998, vol. 17, pp. 1688–1699.

    Article  PubMed  CAS  Google Scholar 

  36. Malnick, S.D., Bass, D.D., and Kaye, A.M., Creatine Kinase BB: a Response Marker in Liver and Other Organs, Hepatology, 1993, vol. 17, pp. 423–428.

    Google Scholar 

  37. Miller, K., Halow, J., and Kpretsky, A.P., Phosphocreatine Protects Transgenic Mouse Liver Expressing Creatine Kinase from Hypoxia and Ischemia, Am. J. Physiol., 1993, vol. 265, pp. C1544–C1551.

    PubMed  CAS  Google Scholar 

  38. Lyzlova, S.N. and Stefanov, V.E., Polymorphism and Activity of Creatine Kinase. Diagnostic Significance, Vestnik AMN, 1987, is. 7, pp. 29–34.

  39. Khlgatyan, D.S., Nersesova, L.S., Gazaryanz, M.G., Mkrtchyan, Z.S., Meliksetyan, G.O., Pogosyan, L.G., Kostandyan, S.P., and Akopyan, G.I., Enzymatic Systems of Workers Employed in Production of Synthetic Rubber, Toks. Vestn., 2009, no. 2, pp. 9–16.

  40. Nersesova, L.S., Gazaryanz, M.G., Meliksetyan, G.O., Mkrtchyan, Z.S., Pogosyan, L.G., Akopyan, G.I., Arsenyan, F.G., and Arutuynyan, G.L., Biomarkers of Organotoxic Action of 1,3-Phosphodiazaadamantanes Derivatives Possessing Anti-Tumor Activity, Vopr. Biol. Med. Farm. Khim., 2009, no. 4, pp. 50–57.

  41. Erecinska, M. and Silver, I.A., ATP and Brain Function, J. Cereb. Blood Flow Metab., 1989, vol. 9, p. 219.

    Article  Google Scholar 

  42. Kaldis, P., Hemmer, W., Zanolla, E., Holtzman, D., and Wallimann, T., “Hot Spots” of Creatine Kinase Localization in Brain: Cerebellum, Hippocampus and Choroids Plexus, Dev. Neurosci., 1996, vol. 18, pp. 542–554.

    Article  PubMed  CAS  Google Scholar 

  43. Shulman, R.G., Rothman, D.L., Behar, K.L., and Hyder, F., Energetic Basis of Brain Activity: Implications for Neuroimaging, Trends Neurosci., 2004, vol. 27, pp. 489–495.

    Article  PubMed  CAS  Google Scholar 

  44. Ames, A., III, CNS Energy Metabolism as Related to Function, Brain Res. Rev., vol. 34, pp. 42–68.

  45. Lerner, M.H. and Friedhoff, A.J., Characterization of a Brain Particulate Bound Form of Creatine Kinase, Life Sciences, 1980, vol. 26, pp. 1969–1976.

    Article  PubMed  CAS  Google Scholar 

  46. Oliet, S.H., Piet, R., and Poulain, D.A., Control of Glutamate Clearance and Synaptic Efficacy by Glial Coverage of Neurons, Science, 2001, vol. 292, pp. 923–926.

    Article  PubMed  CAS  Google Scholar 

  47. Xu, C.J., Klunk, W.E., Kanfer, J.N., Xiong, Q., Miller, G., and Pettegrew, J.W., Phosphocreatine Dependent Glutamate Uptake by Synaptic Vesicles. A Comparison with ATP-Dependent Glutamate Uptake, J. Biol. Chem., 1996, vol. 271, pp. 13 435–13 440.

    CAS  Google Scholar 

  48. Shen, W., Willis, D., Zhang, Y., Schlattner, U., Wallimann, T., and Molloy, G.R., Expression of Creatine Kinase Isoenzyme Genes during Postnatal Development of Rat Brain Cerebellum: Evidence for Transcriptional Regulation, Biochem. J., 2002, vol. 367, pp. 369–380.

    Article  PubMed  CAS  Google Scholar 

  49. Brady, S.T. and Lasek, R.J., Nerve-Specific Enolase and Creatine Phosphokinase in Axonal Transport: Soluble Proteins and the Axoplasmic Matrix, Cell, 1981, vol. 23, pp. 515–523.

    Article  PubMed  CAS  Google Scholar 

  50. Jost, C.R., Van der Zee, C.E., In’t Zandt, H.J., Oerlemans, F., Verheij, M., Streijger, F., and Wie ringa, B., Creatine Kinase B-Driven Energy Transfer in the Brain is Important for Habituation and Spatial Learning Behaviour, Mossy Fibre Field Size and Determination of Seizure Susceptibility, Eur. J. Neurosci., 2002, vol. 15, pp. 1692–1706.

    Article  PubMed  Google Scholar 

  51. Streijger, F., Oerlemans, F., Ellenbroek, B.A., Jost, C.R., Wieringa, B., and Vander Zee, C.E., Structural and Behavioural Consequences of Double Deficiency for Creatine Kinases BCK and UbCkmit, Behav. Brain Res., 2005, vol. 157, pp. 219–234.

    Article  PubMed  CAS  Google Scholar 

  52. Braissant, O., Henry, H., Loup, M., Eilers, B., and Bachmann, C., Endogenous Synthesis and Transport of Creatine in the Rat Brain: an in situ Hybridization Study, Brain Res. Mol. Brain Res., 2001, vol. 86, pp. 192–201.

    Article  Google Scholar 

  53. Sestili, P., Martinelli, C., Bravi, G., Schattner, U., Wallimann, T., Elsasser, H.P., Wittern, K.P., Wenck, H., Stab, F., and Blatt, T., Creatine Supplementation Affords Cytoprotection in Oxidatively Injured Cultured Mammalian Cells via Direct Antioxidant Activity, Free Radic. Biol. Med., 2006, vol. 40, pp. 837–849.

    Article  PubMed  CAS  Google Scholar 

  54. Lenz, H., Schmidt, M., Welge, V., Schlattner, U., Wallimann, T., Elsasser, H.-P., Wittern, K.-P., Wenck, H., Stab, F., and Blatt, T., The Creatine Kinase System in Human Skin: Protective Effects of Creatine Against Oxidative and UV Damage in vitro and in vivo, J. Invest. Dermatol., 2005, vol. 124, pp. 443–452.

    Article  PubMed  CAS  Google Scholar 

  55. Bothwell, J.H., Rae, C., Dixon, R.M., Styles, P., and Bhakoo, K.K., Hypo-Osmotic Swelling Activated Release of Organic Osmolytes in Brain Slices: Implications for Brain Oedeman in vivo, J. Neurochem., 2001, vol. 77, pp. 1632–1640.

    Article  PubMed  CAS  Google Scholar 

  56. Klivenyi, P., Ferrante, R.J., Matthews, R.T., Bogdanov, M.B., Klein, A.M., Andreassen, O.A., Mueller, G., Wemer, M., Kaddurah-Daouk, R., and Beal, M.F., Neuroprotective Effects of Creatine in a Transgenic Animal Model of Amyotrophic Lateral Sclerosis, Nat. Med., 1999, vol. 5, pp. 347–350.

    Article  PubMed  CAS  Google Scholar 

  57. Lensman, M., Korzhevskii, D.E., Mourovets, V.O., Kostkin, V.B., Izvarina, N., Perasso, L., Gandolfo, C., Otellin, V.A., Polenov, S.A., and Balestrino, M., Intracerebroventricular Administration of Creatine Protects against Damage by Global Cerebral Ischemia in Rat, Brain Res., 2006, vol. 1114, pp. 187–194.

    Article  PubMed  CAS  Google Scholar 

  58. Steeghs, K., Benders, Ad., Oerlemans, F., de Haan, A., Heerschap, A., Ruitenbeek, W., Jost, C., van Deursen, J., Perryman, B., Pette, D., Bruckwilder, M., Koudijs, J., Jap, P., Veerkamp, J., and Wieringa, B., Altered Ca2+-Response in Muscles with Combined Mitochondrial and Cytosolic Creatine Kinase Deficiencies, Cell, 1997, vol. 89, pp. 93–103.

    Article  PubMed  CAS  Google Scholar 

  59. Meyer, L.E., Machado, L.B., Santiago, A.P., da-Silva, W.S., De Felice, F.G., Holub, O., Oliveira, M.F., and Galina, A., Mitochondrial Creatine Kinase Activity Prevents Reactive Oxygen Species Generation, J. Biol. Chem., 2006, vol. 281, pp. 37 361–37 371.

    CAS  Google Scholar 

  60. Watanabe, A., Kato, N., and Kato, T., Effects of Creatine on Mental Fatigue and Cerebral Hemoglobin Oxygenation, Neurosci. Res., 2002, vol. 42, pp. 279–285.

    Article  PubMed  CAS  Google Scholar 

  61. Couzin, J., Clinical Research Testing a Novel Strategy Against Parkinson’s Disease, Science, 2007, vol. 315, pp. 1778.

    Article  PubMed  CAS  Google Scholar 

  62. Kreider, R.B., Melton, C., Rasmussen, C.J., Green wood, M., Lancaster, S., Cantler, E.C., Milnor, P., and Almada, A.L., Long-Term Creatine Supplementation Does not Significantly Affect Clinical Markers of Health in Athletes, Mol. Cell. Biochem., 2003, vol. 244, pp. 95–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Nersesova.

Additional information

Dedicated to memory of my teacher, Prof. Susanna N. Lyslova

Original Russian Text © L. S. Nersesova, 2011, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2011, Vol. 47, No. 2, pp. 120–127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nersesova, L.S. Role of creatine kinase and its substrates in the central nervous system in norm and in various pathologies. J Evol Biochem Phys 47, 140–150 (2011). https://doi.org/10.1134/S0022093011020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093011020034

Key words

Navigation