Skip to main content
Log in

Changes of activity of the protein-synthesizing system of brain neurons of the ground squirrel Citellus undulatus during hibernation and hypothermia

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Using fluorescent and electron microscopy a comparative analysis was performed of components of the protein-synthesizing system of hippocampal neurons both in ground squirrels in various phases of the torpor-activity cycle and in rats cooled under the hypoxia-hypercapnia conditions. Results of the study have shown that in hippocampal neurons of the ground squirrels entering the natural torpor state and of rats under conditions of artificial hypothermia to 17°C, similar mechanisms might be possible to function, one of their obligatory components being a generalized decrease of activity of the protein-synthesizing system with its subsequent restoration at the exit from hypothermia. Cessation of hypoxia-hypercapnia even under conditions of a further temperature decrease restored the rat neuronal protein-synthesizing activity, which seems to indicate the presence of a potential possibility of adaptation of brain neurons in vivo to low temperatures, at which the integral organism of non-hibernating homoeothermic animals does not survive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon, R.Ya., Study of Generalized Metabolic Response of Nerve Cells to Change of the Functional State and to Action of Damaging Factors, Doctorate Sci. Dissertation, Pushchino, 2000.

  2. Manina, A.A., Ultrastukturnye izmeneniya i reparativnye protsessy v tsentralnoi nervnoi sisteme pri razlichnykh vozdeistviyakh (Ultrastructural Changes and Reparative Processes in the Central Nervous System under Various Actions), Leningrad, 1971.

  3. Demin, N.N., Shartanova, T.Kh., and Emirbekov, E.Z., Neirokhimiya zimnei spyachki mlekopitayushchikh (Neurochemistry of Hibernation in Mammals), Leningrad, 1988.

  4. Gordon, R.Ya., Bocharova, L.S., Arkhipov, V.I., and Karnaukhov, V.N., RNA Metabolism and Uridine Transport in the Brain of Hibernators, Evolutionary Aspects of Hibernation, Kreps, E.M., Ed., Leningrad, 1986, pp. 73–79.

  5. Bocharova, L.S., Gordon, R.Ya., and Popov, V.I., RNA Metabolism in the Brain of Hibernators. 2. Rapid Changes in the Neuronal Ribosome RNA Content, Mechanisms of Natural Hypometabolic States, Kovaleva, S., Popova, N., Solomonov, N., and Wang, L., Eds., Pushchino, 1992, pp. 125–132.

  6. Popov, V.I. and Bocharova, L.S., Hibernation-Induced Structural Changes in Synaptic Contacts between Mossy Fibres and Hippocampal Pyramidal Neurons, Neurosci., 1992, vol. 48, pp. 53–62.

    Article  CAS  Google Scholar 

  7. Planas, A.M., Soriano, M.A., Estrada, A., Estrada, A., Sanz, O., Martin, F., and Ferrer, I., The Heat Shock Stress Response after Brain Lesions: Induction of 72 kDa Heat Shock Protein (Cell Types Involved, Axonal Transport, Transcriptional Regulation) and Protein Synthesis Inhibition, Progr. Neurobiol., 1997, vol. 51, pp. 607–636.

    Article  PubMed  CAS  Google Scholar 

  8. Black, A.B. and Subject, J.E., Involvement of rRNA Synthesis in the Enhanced Survival and Recovery of Proteins Synthesis Seen in Thermotolerance, J. Cell Physiol., 1989, vol. 138, pp. 439–449.

    Article  PubMed  CAS  Google Scholar 

  9. Frerichs, K.U. and Hallenbeck, J.M., Hibernation in Ground Squirrels Induced State and Species-Specific Tolerance to Hypoxia and Glycemia: An in vitro Study in Hippocampal Slices, J. Cerebr. Blood Flow Met., 1998, vol. 18, pp. 168–175.

    Article  CAS  Google Scholar 

  10. Krilovicz, B.L., Glotzbach, S.F., and Heller, H.C., Neuronal Activity during Sleep and Complete Bouts of Hibernation, Am. J. Physiol., 1988, vol. 255 pp. 1008–1019.

    Google Scholar 

  11. Fischer, S., et al., Hypothermia Abolishes Hypoxia-Induced Hyperpermeability in Brain Microvessel Endothelial Cells, Mol. Brain Res., 1999, vol. 74, pp. 135–144.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, Z., Sobel, R.A., Cheng, D., Steinberg, G.K., and Yenari, M.A., Mild Hypothermia Increases Bcl-2 Protein Expression following Global Cerebral Ischemia, Mol. Brain Res., 2001, vol. 95, pp. 75–85.

    Article  PubMed  CAS  Google Scholar 

  13. Drew, K.L., Rice, M.E., Kuhn, T.B., and Smith, M.A., Neuroprotective Adaptations in Hibernation: Therapeutic Implication for Ischemia-Reperfusion, Traumatic Brain Injury and Neurodegenerative Diseases, Free Radic. Biol. Med., 2001, vol. 31, pp. 563–573.

    Article  PubMed  CAS  Google Scholar 

  14. Ignatiev, D.A., Sukhova, G.S., and Sukhov, V.P., Analysis of Changes of Heart Rate and Temperature in the Ground Squirrel Citellus undulatus in Various Physiological States, Zh. Obshch. Biol., 2001, vol. 62, No. 1, pp. 66–67.

    Google Scholar 

  15. Maistrakh, E.V., Gipotermiya i gipobios (Hypothermia and Hypobiosis), Moscow, 1964.

  16. Shtark, M.B., Mozg zimnespyashchikh (Brain of Hibernators), Novosibirsk, 1970.

  17. Heller, H.C., Hibernation: Neuronal Aspects, Ann. Rev. Physiol., 1979, vol. 40, pp. 305–332.

    Article  Google Scholar 

  18. Bekman, A.L. and Stanton, T.L., Properties of the CNS during the State of Hibernation, The Neural Basis of Behavior, Bekman, A.L., Ed., New York, 1982, pp. 19–45.

  19. Vinogradova, O.S., Gippokamp i pamyat’ (Hyppocampus and Memory), Moscow, 1975.

  20. Matson, M.P. and Kater, S.B., Development and Selective Neurodegeneration in Cell Cultures from Different Hippocampal Regions, Brain Res., 1989, vol. 490, pp. 110–125.

    Article  Google Scholar 

  21. Giaja, J., Hypothermie, Hibernation et Poikilothermie Experimentale, Biol. Med., 1953, vol. 42, pp. 545–552.

    CAS  Google Scholar 

  22. Timofeev, M.N., Iskusstvennyi gipobioz (Artificial Hypobiosis), Moscow, 1983.

  23. Vinokurov, V.N. and Akhremenko, A.K., Populyatsionnaya ekologiya dlinnokhvostykh suslikov Yakutii (Population Ecology of the Yakutia Long-Tail Ground Squirrels), 1982.

  24. Gordon, R.Ya., Bocharova, L.S., Kruman, I.I., Kruman, I.I., Popov, V.I., Kazantsev, A.P., Khutzian, S.S., and Karnaukhov, V.N., Acridine Orange as an Indicator of the Cytoplasmic Ribosome State, Cytometry, 1997, vol. 29, pp. 215–221.

    Article  PubMed  CAS  Google Scholar 

  25. Karnaukhov, V.I., Yashin, V.A., Kazantsev, A.P., Karnaukhova, N.A., and Kulakov, V.I., Two-Wave Microfluorimeter—Photometer Based on Standard Equipment, Tsitologiya, 1987, vol. 29, pp. 113–118.

    CAS  Google Scholar 

  26. Chelidze, I.V. and Zatsepina, O.V., Morpofunctional Classification of Nucleoli, Tsiologiya, 1987, vol. 105, pp. 252–268.

    Google Scholar 

  27. Frerichs, K.U., Smith, C.B., Brenner, M., DeGracia, D.J., Krause, G.S., Marrone, L., Dever, T.E., and Hallenbeck, J.V., Supression of Proteins Synthesis in Brain during Hibernation Involves Inhibition of Protein Initiation and Elongation, Proc. Natl Acad. Sci. USA, 1998, vol. 95, pp. 14 511–14 516.

    Article  CAS  Google Scholar 

  28. Krause, G.S. and Tiffany, B.R., Suppression of Protein Synthesis in the Reperfused Brain, Stroke, 1993, vol. 24, pp. 747–756.

    PubMed  CAS  Google Scholar 

  29. Doutheil, J., Gissel, C., Oshlies, U., Hossmann, K.-A., and Pashen, W., Relation of Neuronal Endoplasmic Reticulum Calcium Homeostasis to Ribosomal Aggregation and Protein Synthesis: Implications for Stress-Induced Suppression of Protein Synthesis, Brain Res., 1997, vol. 772, pp. 43–51.

    Article  Google Scholar 

  30. Ignatiev, D.A., Vorobiev, V.V., Sukhova, G.S., Ziganshin, R.Kh., Sukhov, V.P., Temnov, A.V., Temnova, A.A., and Ashmarin, I.P., Hibernation and Artificial Hypobiosis, Neirokhim., 1998, no. 3, pp. 240–263.

  31. Bullard, F.W., David, G., and Nichols, C.T., The Mechanism of Hypoxic Tolerance in Hibernating and Non-Hibernating Mammals, Mammalian Hibernation, Bulletin of the Museum of Comparative Zoology at Harvard Colledge, Lyman, C.P. and Dawe, A.R., Eds., Cambridge, MA., 1960, pp. 322–335.

  32. Lust, W.D., Whaton, A.B., Feussuer, G., and Passonneau, J., Metabolism in the Hamster Brain during Hibernation and Arousal, Brain Res., 1989, vol. 486, pp. 12–20.

    Article  Google Scholar 

  33. Haak, L.L., Mignot, E., Kilduff, T.S., Dement, W.C., and Heller, H.C., Regional Changes in Central Monoamine and Metabolite Levels during the Hibernation Cycle in the Golden-Mantled Ground Squirrel, Brain Res., 1991, vol. 563, pp. 215–220.

    Article  PubMed  CAS  Google Scholar 

  34. Osborne, P.G., Hu, Y., Covey, D.N., Barns, B.N., Katz, Z., and Drew, K.L., Determination of Striatal Extracellular Gamma-Aminobutyric Acid in Non-Hibernating and Hibernating Arctic Ground Squirrels using Quantitative Microdialysis, Brain Res., 1999, vol. 839, pp. 1–6.

    Article  PubMed  CAS  Google Scholar 

  35. Choi, D.W., Cerebral Hypoxia: Some New Approaches and Unanswered Questions, J. Neurosci., 1990, vol. 10, pp. 2493–2501.

    PubMed  CAS  Google Scholar 

  36. Shaver, E.G., Welsh, F.A., Sutton, L.N., Mora, G., Gennarelli, L.M., and Norwood, C.R., Deep Hypothemia Diminishes the Ischemic Induction of Heat-Shock Protein-72 mRNA in Piglet Brain, Stroke, 1995, vol. 26, pp. 1273–1278.

    PubMed  CAS  Google Scholar 

  37. Ivanov, K.P., Changes of Physiological Functions, Mechanisms of their Restoration and Temperature Life Limits during Hypothermia, Usp. Fiziol. Nauk, 1996, vol. 27. pp. 84–105.

    PubMed  CAS  Google Scholar 

  38. Andjus, R.K., Suspended Animation in Cooled, Supercooled and Frozen Rats, J. Physiol. (England), 1955, vol. 128, pp. 547–556.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R. Ya. Gordon, D. A. Ignatiev, V. V. Rogachevskii, N. I. Medvedev, I. V. Kraev, I. V. Patrushev, S. S. Khutsyan, and V. I. Popov, 2006, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2006, Vol. 42, No. 3, pp. 237–243.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, R.Y., Ignatiev, D.A., Rogachevskii, V.V. et al. Changes of activity of the protein-synthesizing system of brain neurons of the ground squirrel Citellus undulatus during hibernation and hypothermia. J Evol Biochem Phys 42, 299–307 (2006). https://doi.org/10.1134/S0022093006030082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093006030082

Keywords

Navigation