Skip to main content
Log in

The brain is one of the sources of L-dihydroxyphenylalanine in systemic circulation in fetuses and neonatal rats

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The performed study was aimed at checking our hypothesis that the developing brain is a source of L-dihydroxyphenylalanine (L-DOPA), a precursor of dopamine in the total circulation system. At the initial stage, the L-DOPA concentration in peripheral blood was analyzed at the 18th and 21st embryonal days (E18 and E21), at the 3rd postnatal day (P3), and at the prepubertal period (P30). The highest L-DOPA concentration was revealed at the perinatal period, while decreased 4–12 times for the first month of life. The subsequent analysis of dynamics of the total blood L-DOPA content showed that maintenance of the constant L-DOPA concentration at the perinatal period on the background of a gradual increase of the blood serum volume is due to a rise of its secretion. At the postnatal period (P3–P30), the blood L-DOPA content increased twice in males, whereas it decreased to the same extent in females. Analysis of the L-DOPA concentration in two most important brain centers, hypothalamus and mesencephalon-rhombencephalon, showed its twofold decrease in hypothalamus during E18–E21 of development; then it slightly increased from E21 to P3 and fell 4–5 times by P30. In mesencephalon-rhombencephalon, the L-DOPA concentration was slightly reduced from E18 to E21 (only in females), while on P3 it returned to the E18 level and decreased 7–9 times by P30. The direct proof for the L-DOPA release from the developing brain into the systemic circulation follows from comparison of the blood L-DOPA concentration in shamoperated and encephalectomized rat fetuses after mechanical destruction of neurons of the two abovementioned most important dopaminergic centers. Thus, encephalectomy led to a twofold reduction of the blood L-DOPA concentration (statistically significant differences were observed only in females). Thus, the work presents evidence that the developing brain is one of L-DOPA sources in the total circulation system in rats during prenatal and early postnatal periods of ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peleg, D., Arbogast, L.A., Peleg, E., and Ben-Jonathan, N., Predominance of L-Dopa in Fetal Plasma and the Amniotic Fluid during Late Gestation in the Rat, Am. J. Obstet. Gynecol., 1984, vol. 149, pp. 880–883.

    CAS  PubMed  Google Scholar 

  2. Inoue, K., Kudo, T., and Kishimoto, Y., The Production Mechanism of Amniotic Fluid Dopamine in Rats, Asia Oceania J. Obstet. Gynaecol., 1991, vol. 17, pp. 349–355.

    CAS  PubMed  Google Scholar 

  3. Eldrup, E., Richter, E.A., and Christensen, N.J., DOPA, Norepinephrine, and Dopamine in Rat Tissues: No Effect of Sympathectomy on Muscle DOPA, Am. J. Physiol., 1989, vol. 256, pp. E284–E287.

    CAS  PubMed  Google Scholar 

  4. Phillippe, M., Fetal Catecholamines, Am. J. Obstet. Gynecol., 1983, vol. 146, pp. 840–855.

    CAS  PubMed  Google Scholar 

  5. Goldstein, D.S., Mezey, E., Yamamoto, T., Aneman, A., Friberg, P., and Eisenhofer, G., Is There a Third Peripheral Catecholaminergic System? Endogenous Dopamine as an Autocrine/Paracrine Substance Derived from Plasma DOPA and Inactivated by Conjugation, Hypertens. Res., 1995, vol. 18, pp. 93–99.

    Google Scholar 

  6. Eisenhofer, G., Tian, H., Holmes, C., Matsunaga, J., Roffler-Tarlov, S., and Hearing, V.J., Tyrosinase: A Developmentally Specific Major Determinant of Peripheral Dopamine, FASEB J., 2003, vol. 17, pp. 1248–1255.

    Article  CAS  PubMed  Google Scholar 

  7. Westerink, B.H.C., van Es, T.P., and Spaan, S.J., Effects of Drugs Interfering with Dopamine and Noradrenaline Biosynthesis in the Endogenous 3,4-Dihydroxyphenylalanine Levels in the Rat Brain, J. Neurochem., 1982, vol. 39, pp. 44–51.

    CAS  PubMed  Google Scholar 

  8. Levitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S., Elucidation of the Rate-Limiting Step in Norepinephrine Biosynthesis in the Perfused Guinea-Pig Heart, J. Pharmacol. Exp. Ther., 1965, vol. 148, pp. 1–8.

    CAS  PubMed  Google Scholar 

  9. Okamura, H., Kitahama, K., Mons, N., Ibata, Y., Jouvet, M., and Geffard, M., L-DOPA-Immunoreactive Neurons in the Rat Hypothalamic Tuberal Region, Neurosci. Lett., 1988, vol. 95, pp. 42–46.

    CAS  PubMed  Google Scholar 

  10. Okamura, H., Kitahama, K., Nagatsu, I., and Geffard, M., Comparative Topography of Dopamine-and Tyrosine Hydroxylase-Immunoreactive Neurons in the Rat Arcuate Nucleus, Neurosci. Lett., 1988, vol. 95, pp. 347–353.

    CAS  PubMed  Google Scholar 

  11. Okamura, H., Kitahama, K., Raynaud, B., Nagatsu, I., Borri-Volatorni, C., and Weber, M., L-Amino Acid Decarboxylase (AADC)-Immunoreactive Cells in the Tuberal Region of the Rat Hypothalamus, Biomed. Res., 1988, vol. 9, pp. 261–267.

    CAS  Google Scholar 

  12. Meister, B., Hokfelt, T., Steinbusch, H.W., Skagerberg, G., Lindvall, O., Geffard, M., Joh, T.H., Cuello, A.C., and Goldstein, M., Do Tyrosine Hydroxylase-Immunoreactive Neurons in the Ventrolateral Arcuate Nucleus Produce Dopamine or Only L-Dopa?, J. Chem. Neuroanat., 1988, vol. 1, pp. 59–64.

    CAS  PubMed  Google Scholar 

  13. Ugryumov, M.V., Melnikova, V.I., Ershov, P.V., Balan, I.S., and Kalas, A., Non-Dopaminergic Neurons Expressing Dopamine Synthesis Enzymes: Differentiation and Functional Significance, Neurosci. Behav. Physiol., 2002, vol. 32, pp. 299–307.

    Article  CAS  PubMed  Google Scholar 

  14. Ugrumov, M.V., Melnikova, V.I., Lavrentyeva, A.V., Kudrin, V.S., and Rayevsky, K.S., Dopamine Synthesis by Non-Dopaminergic Neurons Expressing Individual Complementary Enzymes of the Dopamine Synthetic Pathway in the Arcuate Nucleus of Fetal Rats, Neurosci., 2004, vol. 124, pp. 629–635.

    Article  CAS  Google Scholar 

  15. Misu, Y., Goshima, Y., Ueda, H., and Okamura, H., Neurobiology of L-DOPAergic Systems, Prog. Neurobiol., 1996, vol. 49, pp. 415–454.

    Article  CAS  PubMed  Google Scholar 

  16. Ershov, P.V., Ugrumov, M.V., Calas, A., Krieger, M., and Thibault, J., Differentiation of Tyrosine Hydroxylase-Synthesizing and/or Aromatic L-Amino Acid Decarboxylase-Synthesizing Neurons in the Rat Mediobasal Hypothalamus: Quantitative Double-Immunofluorescence Study, J. Comp. Neurol., 2002, vol. 446, pp. 114–122.

    Article  CAS  PubMed  Google Scholar 

  17. Mitskevich, M.S., Rumyantseva, O.N., and Proshlyakova, E.V., Encephaloectomy in Mammal Embryos (Rat, Rabbit, Guinea Pig), Sov. J. Devel. Biol., 1970, vol. 1, pp. 466–470.

    Google Scholar 

  18. Björklund, A. and Lindvall, O., Dopamine-Containing System in the CNS, Handbook of Chemical Neuroanatomy. Classical Neurotransmitters in the CNS, Amsterdam, 1984, vol. 2, pp. 55–122.

    Google Scholar 

  19. Hökfelt, T., Johansson, O., and Goldstein, M., Central Catecholamine Neurons as Revealed by Immunocytochemistry with Special Reference to Adrenaline Neurons, Handbook of Chemical Neuroanatomy. Classical Neurotransmitters in the CNS, Amsterdam, 1984, vol. 2, pp. 157–276.

    Google Scholar 

  20. Gregersen, M.J., Gibson, J.J., and Stead, E.A., A Practical Method for the Determination of Blood Volume with Dye T-1884, J. Lab. Clin. Med., 1944, vol. 29, pp. 1266–1272.

    CAS  Google Scholar 

  21. Specht, L.A., Pickel, V.M., Joh, T.H., and Reis, D.J., Light-Microscopic Immunocytochemical Localization of Tyrosine Hydroxylase in Prenatal Rat Brain. I. Early Ontogeny, J. Comp. Neurol., 1981, vol. 199, pp. 233–253.

    CAS  PubMed  Google Scholar 

  22. Ugrumov, M.V., Taxi, J., Tixier-Vidal, A., Thibault, J., and Mitskevich, M.S., Ontogenesis of Tyrosine Hydroxylase-Immunopositive Structures in the Rat Hypothalamus. An Atlas of Neuronal Cell Bodies, Neurosci., 1989, vol. 29, pp. 135–156.

    CAS  Google Scholar 

  23. Weisz, J. and Ward, I.L., Plasma Testosterone and Progesterone Titers of Pregnant Rats, Their Male and Female Fetuses, and Neonatal Offspring, Endocrinology, 1980, vol. 106, pp. 306–316.

    CAS  PubMed  Google Scholar 

  24. Loizou, L.A., Uptake of Monoamines into Central Neurones and the Blood-Brain Barrier in the Infant Rat, Br. J. Pharmacol., 1970, vol. 40, pp. 800–813.

    CAS  PubMed  Google Scholar 

  25. Balan, I.S., Ugrumov, M.V., Calas, A., Mailly, P., Krieger, M., and Thibault, J., Tyrosine Hydroxylase-and/or Aromatic L-Amino Acid Decarboxylase-Expressing Neurons in the Mediobasal Hypothalamus of Perinatal Rats: Differentiation and Sexual Dimorphism, J. Comp. Neurol., 2000, vol. 425, pp. 167–176.

    Article  CAS  PubMed  Google Scholar 

  26. Lavrentyeva, A.V., Secretory Activity of Catecholaminergic and Gonadotropin-Releasing Hormone-Producing Neurons in Rat Brain during Ontogenesis, Cand. Sci. Dissertation, Moscow, 2004.

  27. Mitskevich, M.S. and Rumyantseva, O.N., Possible Role of the Hypothalamus in Regulation of the Adrenocortical and Thyroid Functions during Embryonic Development, Sov. J. Dev. Biol., 1972, vol. 3, pp. 305–312.

    CAS  PubMed  Google Scholar 

  28. Mitskevich, M.S. and Sapronova, A.Ya., Possible Role of Hypothalamus and Hypophysis in the Control of Development of Pancreas Reactivity to the Effect of Glucose in Rat Fetuses, Endokrinologie, 1982, vol. 79, pp. 227–334.

    CAS  PubMed  Google Scholar 

  29. Daikoku, S., Adachi, T., Kawano, H., and Wakabayashi, K., Development of Hypothalamic-Hypophysial-Gonadotrophic Activities in Fetal Rats, Experientia, 1981, vol. 37, pp. 1346–1347.

    Article  CAS  PubMed  Google Scholar 

  30. Lalau, J.D., Aubert, M.L., Carmignac, D.F., Gregoire, I., and Dupouy, J.P., Reduction in Testicular Function in Rats. I. Reduction by a Specific Gonadotropin-Releasing Hormone Antagonist in Fetal Rats, Neuroendocrinology, 1990, vol. 51, pp. 284–288.

    CAS  PubMed  Google Scholar 

  31. Miller, D.W., Fraser, H.M., and Brooks, A.N., Suppression of Fetal Gonadotrophin Concentrations by Maternal Passive Immunization to GnRH in Sheep, J. Reprod. Fertil., 1998, vol. 113, pp. 69–73.

    CAS  PubMed  Google Scholar 

  32. Zakharova, L.A., Malyukova, I.V., Proshlyakova, E.V., Potapova, A.A., Sapronova, A.Y., Ershov, P.V., and Ugrumov, M.V., Hypothalamo-Pituitary Control of the Cell-Mediated Immunity in Rat Embryos: Role of LHRH in Regulation of Lymphocyte Proliferation, J. Reprod. Immunol., 2000, vol. 47, pp. 17–32.

    CAS  PubMed  Google Scholar 

  33. Cochard, P., Goldstein, M., and Black, I.B., Initial Development of the Noradrenergic Phenotype in Autonomic Neuroblasts of the Rat Embryo in vivo, Dev. Biol., 1979, vol. 71, pp. 100–114.

    Article  CAS  PubMed  Google Scholar 

  34. Cochard, P., Goldstein, M., and Black, I.B., Ontogenetic Appearance and Disappearance of Tyrosine Hydroxylase and Catecholamines in the Rat Embryo, Proc. Natl Acad. Sci. USA, 1978, vol. 75, pp. 2986–2990.

    CAS  PubMed  Google Scholar 

  35. Baetge, G., Pintar, J.E., and Gershon, M.D., Transiently Catecholaminergic (TC) Cells in the Bowel of the Fetal Rat: Precursors of Noncatecholaminergic Enteric Neurons, Dev. Biol., 1990, vol. 141, pp. 353–380.

    Article  CAS  PubMed  Google Scholar 

  36. Coupland, R.E., Kent, C., and Kent, S.E., Normal Function of Extra-Adrenal Chromaffin Tissues in the Young Rabbit and Guinea-Pig, J. Endocrinol., 1952, vol. 92, pp. 433–442.

    Google Scholar 

  37. Lempinen, M., Extra-Adrenal Chromaffin Tissue of the Rat and the Effect of Cortical Hormones on It, Acta Physiol. Scand., 1964, vol. 62, suppl. 231, pp. 1–91.

    PubMed  Google Scholar 

  38. Ben-Jonathan, N. and Maxson, R.E., Elevation of Dopamine in Fetal Plasma and the Amniotic Fluid during Gestation, Endocrinol., 1978, vol. 102, pp. 649–652.

    CAS  Google Scholar 

  39. Zhou, Q.Y., Quaife, C.J., and Palmiter, R.D., Targeted Disruption of the Tyrosine Hydroxylase Gene Reveals That Catecholamines Are Required for Mouse Fetal Development, Nature, 1995, vol. 374, pp. 640–643.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Melnikova, A.Ya. Sapronova, A.V. Lavrentyeva, E.V. Proshlyakova, S.N. Voronova, S.I. Ogurtsov, and M.V. Ugryumov, 2006, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2006, Vol. 42, No. 1, pp. 19–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnikova, V.I., Sapronova, A.Y., Lavrentyeva, A.V. et al. The brain is one of the sources of L-dihydroxyphenylalanine in systemic circulation in fetuses and neonatal rats. J Evol Biochem Phys 42, 21–29 (2006). https://doi.org/10.1134/S0022093006010030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093006010030

Keywords

Navigation