Skip to main content
Log in

Burning of Heavy Fuel Oil in a Steam Jet in a New Burner

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A series of experimental investigations is performed for determining the thermal and environmental characteristics of burning heavy fuel oil of the M-100 type sprayed by a jet of superheated steam in a laboratory prototype of a new burner. A scheme of liquid fuel burning preventing choking of narrow fuel channels of injectors is proposed; this scheme ensures effective burning of high-viscosity fuels and wastes. The process of stable burning of heavy fuel oil in a low-power (7 kW) burner with low concentrations of toxic emissions and high combustion efficiency is realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heating Oil Explained (U.S. Energy Inform. Administr., Washington, 2019); https://www.eia.gov/energyexplained/heating-oil/use-of-heating-oil.php.

  2. Oil: Crude and Petroleum Products Explained (U.S. Energy Inform. Administr., Washington, 2019); https://www.eia.gov/energyexplained/oil-and-petroleum-products/use-of-oil.php.

  3. A. G. Abdul Jameel, Y. Han, O. Brignoli, et al. “Heavy Fuel Oil Pyrolysis and Combustion: Kinetics and Evolved Gases Investigated by TGA-FTIR,” J. Anal. Appl. Pyrolysis. 127, 183–195 (2017); DOI: https://doi.org/10.1016/j.jaap.2017.08.008.

    Article  Google Scholar 

  4. J. Barroso, F. Barreras, and J. Ballester, “Behavior of a High-Capacity Steam Boiler Using Heavy Fuel Oil. Pt 1. High-Temperature Corrosion,” Fuel Process. Technol. 86 (2), 89–105 (2004); DOI: https://doi.org/10.1016/j.fuproc.2003.12.006.

    Article  Google Scholar 

  5. H. L. Goldstein and C. W. Siegmund, “Influence of Heavy Fuel Oil Composition and Boiler Combustion Conditions on Particulate Emissions,” Environment. Sci. Technol. 10 (12), 1109–1114 (1976); DOI: https://doi.org/10.1021/es60122a006.

    Article  ADS  Google Scholar 

  6. O. Sippula, J. Hokkinen, H. Puustinen, et al., “Comparison of Particle Emissions from Small Heavy Fuel Oil and Wood-Fired Boilers,” Atmospher. Environment. 43 (32), 855–4864 (2009); DOI: https://doi.org/10.1016/j.atmosenv.2009.07.022.

    Article  Google Scholar 

  7. A. G. Tumanovskii, V. I. Babii, Yu. P. Enyakin, et al., “Improvement of Fuel Burning Technologies,” Teploenergetika, No. 7, 30–39 (1996); https://elibrary.ru/item.asp?id=15055485.

    Google Scholar 

  8. P. Mikaniki, S. M. A. Najafi, and H. Ghassemi, “Experimental Study of a Heavy Fuel Oil Atomization by Pressure-Swirl Injector in the Application of Entrained Flow Gasifier,” Chinese J. Chem. Eng. 27 (4), 765–771 (2019); DOI: https://doi.org/10.1016/j.cjche.2018.10.001.

    Article  Google Scholar 

  9. V. B. Garaniya, “Modelling of Heavy Fuel Oil Spray Combustion Using Continuous Thermodynamics,” Ph. D. Thesis [Univ. Tasmania (Australian Maritime College), Newnham, 2009].

    Google Scholar 

  10. D. R. Schneider and Z. Bogdan, “Effect of Heavy Fuel Oil/Natural Gas Co-Combustion on Pollutant Generation in Retrofitted Power Plant,” Appl. Thermal Eng. 27 (11/12), 1944–1950 (2007); DOI: https://doi.org/10.1016/j.applthermaleng.2006.12.017.

    Article  Google Scholar 

  11. F. Miccio and F. M. Okasha, “Fluidized Bed Combustion and Desulfurization of a Heavy Liquid Fuel,” Chem. Eng. J. 105 (3), 81–89 (2005); DOI: https://doi.org/10.1016/j.cej.2004.10.001.

    Article  Google Scholar 

  12. M. S. B. Khaleghi and R. S. Markadeh, “Thermodynamic Evaluation of Mazut Gasification for Using in Power Generation,” Petrol. Sci. Technol. 34 (6), 531–538 (2016); DOI: https://doi.org/10.1080/10916466.2016.1149491.

    Article  Google Scholar 

  13. S. Kouravand and A. M. Kermani, “Clean Power Production by Simultaneous Reduction of NOx and SOx Contaminants Using Mazut Nano-Emulsion and Wet Flue Gas Desulfurization,” J. Cleaner Product. 201, 229–235 (2018); DOI: https://doi.org/10.1016/j.jclepro.2018.08.017.

    Article  Google Scholar 

  14. A. Alahmer, J. Yamin, A. Sakhrieh, and M. A. Hamdan, “Engine Performance Using Emulsified Diesel Fuel,” Energy Conv. Manag. 51, 1708–1713 (2010); DOI: https://doi.org/10.1016/j.enconman.2009.11.044.

    Article  Google Scholar 

  15. K. Kannan and M. Udayakumar, “NOx and HC Emission Control Using Water Emulsified Diesel in Single Cylinder Diesel Engine,” J. Eng. Appl. Sci. 4, 59–62 (2009).

    Google Scholar 

  16. G. E. Andrews, S. W. Bartle, S. W. Pang, et al., “Diesel/Water Emulsions. Influence on Ignition Delay and Emissions,” in Proc. of the Int. Centre for Heat and Mass Transfer (Taylor and Francis, 1989), pp. 613–625.

  17. M. T. Jacques, J. B. Jordan, A. Williams, and L. Hadley-Coates, “The Combustion of Water-in-Oil Emulsions and the Influence of Asphaltene Content,” Symp. (Int.) Combust. 16 (1), 307–319; DOI: https://doi.org/10.1016/S0082-0784(77)80334-2.

  18. M. Ballester, N. Fueyo, and C. Dopazo, “Combustion Characteristics of Heavy Oil-Water Emulsions,” Fuel 75, 695–705 (1996); DOI: https://doi.org/10.1016/0016-2361(95)00309-6.

    Article  Google Scholar 

  19. A. Parlak, V. Ayhan, and Y. Üst, “New Method to Reduce NOx Emissions of Diesel Engines: Electronically Controlled Steam Injection System,” J. Energy Inst. 85 (3), 135–139 (2012).

    Article  Google Scholar 

  20. A. Farokhipour, E. Hamidpour, and E. Amani, “A Numerical Study of NOx Reduction by Water Spray Injection in Gas Turbine Combustion Chambers,” Fuel 212, 173–186 (2018); DOI: https://doi.org/10.1016/j.fuel.2017.10.033.

    Article  Google Scholar 

  21. M. S. Vigriyanov, V. V. Salomatov, and S. V. Alekseenko, “Method of Sootless Combustion of Fuel,” RF Patent No. RU2219435, MKI F 23 D 5/00, F 23 C 99/00, F 23 L 7/00, Publ. 20.12.2003.

  22. I. S. Anufriev, S. V. Alekseenko, O. V. Sharypov, and E. P. Kopyev, “Diesel Fuel Combustion in a Direct-Flow Evaporative Burner with Superheated Steam Supply,” Fuel 254, 115723 (2019); DOI: https://doi.org/10.1016/j.fuel.2019.115723.

    Article  Google Scholar 

  23. I. S. Anufriev and E. P. Kopyev, “Diesel Fuel Combustion by Spraying in a Superheated Steam Jet,” Fuel Process. Technol. 192, 154–169 (2019); DOI: https://doi.org/10.1016/j.fuproc.2019.04.02742.

    Article  Google Scholar 

  24. I. S. Anufriev, S. V. Alekseenko, E. P. Kopyev, and O. V. Sharypov, “Combustion of Substandard Liquid Hydrocarbons in Atmosphere Burners with Steam Gasification,” J. Eng. Thermophys. 28 (3), 1–8 (2019); DOI: https://doi.org/10.1134/S1810232819030032.

    Article  Google Scholar 

  25. I. S. Anufriev, M. S. Vigriyanov, S. V. Alekseenko, et al., “Steam-Oil Burner,” RF Patent No. RU2684300, MKI F 23 D 5/04, F 23 L 7/00, Publ. 05.04.2019.

  26. M. S. Vigriyanov, I. S. Anufriev, E. P. Kopyev, et al., “Burner,” RF Patent No. RU2647172, MKI F 23 L 7/00, F 23 D 11/20, F 23 C 99/00, Publ. 14.03.2018.

  27. “Catalog of Unique Scientific Setups,” http://ckp-rf.ru/usu/73570.

  28. “Automatic Forced Draught Burners for Liquid Fuels,” Standard DIN EN 267:2011-11 (German Institute for Standardisation, Publ. 01.01.2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Kopyev.

Additional information

This work was supported by the Russian Science Foundation (Grant No. 18-79-10134).

Original Russian Text © S.V. Alekseenko, I.S. Anufriev, M.S. Vigriyanov, E.P. Kopyev, I.S. Sadkin, O.V. Sharypov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 61, No. 3, pp. 11–18, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, S.V., Anufriev, I.S., Vigriyanov, M.S. et al. Burning of Heavy Fuel Oil in a Steam Jet in a New Burner. J Appl Mech Tech Phy 61, 324–330 (2020). https://doi.org/10.1134/S0021894420030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420030025

Keywords

Navigation