Skip to main content
Log in

Internal and Inertial Wave Attractors: A Review

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents a review of theoretical, experimental, and numerical studies of geometric attractors of internal and/or inertial waves in a stratified and/or rotating fluid. The dispersion relation for such waves defines the relationship between the frequency and direction of their propagation, but does not contain a length scale. A consequence of the dispersion relation is energy focusing due to wave reflection from sloping walls. In a limited volume of fluid, focusing leads to the concentration of wave energy near closed geometrical configurations called wave attractors. The evolution of the concept of wave attractors from ray-theory predictions to observations of wave turbulence in physical and numerical experiments is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Peacock and P. Weidman, “The Effect of Rotation on Conical Wave Beams in a Stratified Fluid,” Exp. Fluids 39, 32–37 (2005).

    Article  Google Scholar 

  2. H. Görtler, “Ü ber Eine Schwingungserscheinung in Flüssigkeiten Mit Stabiler Dichteschichtung,” Z. angew. Math. Mech. 23, 65–71 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. E. Mowbray and B. S. H. Rarity, “A Theoretical and Experimental Investigation of the Phase Configuration of Internal Waves of Small Amplitude in a Density Stratified Liquid,” J. Fluid Mech. 28(1), 1–16 (1967).

    Article  ADS  Google Scholar 

  4. T. Dauxois, S. Joubaud, P. Odier, and A. Vanaille, “Instabilities of Internal Gravity Wave Beams,” Annual Rev. Fluid Mech. 50, 131–156 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Tabaei and T. R. Akylas, “Nonlinear Internal Gravity Wave Beams,” J. Fluid Mech. 482, 141–161 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. O. M. Phillips, “Energy Transfer in Rotating Fluids by Reflection of Inertial Waves”, Phys. Fluids 6, 513–520 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Yu. V. Kistovich and Yu. D. Chashechkin, “Reflection of Packets of Internal Waves from a Rigid Plane in a Viscous Fluid” Atmospher. Ocean. Phys. 39(6), 718–724 (1995).

    Google Scholar 

  8. Yu. V. Kistovich and Yu. D. Chashechkin, “The Reflection of Beams of Internal Gravity Waves at a Flat Rigid Surface,” J. Appl. Math. Mech. 59(4), 579–585 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Tilgner, “Oscillatory Shear Layers in Source Driven Flows in an Unbounded Rotating Fluid,” Phys. Fluids 12(5), 1101–1111 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. A. Makarov, V. I. Neklyudov, and Yu. D. Chashechkin, “The Spatial Structure of Beams of Two-Dimensional Monochromatic Internal Waves in an Exponentially Stratified Fluid,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 26(7), 744–754 (1990).

    ADS  Google Scholar 

  11. D. G. Hurley, “The Generation of Internal Waves by Vibrating Elliptic Cylinders. Pt 1. Inviscid Solution,” J. Fluid Mech. 351, 105–118 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. G. Hurley and G. Keady, “The Generation of Internal Waves by Vibrating Elliptic Cylinders. Pt 2. Approximate Viscous Solution,” J. Fluid Mech. 351, 119–139 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. B. R. Sutherland, S. B. Dalziel, G. O. Hughes, and P. F. Linden, “Visualization and Measurement of Internal Waves by ‘Syntetic Schlieren’. Pt 1. Vertically Oscillating Cylinder,” J. Fluid Mech. 390, 93–126 (1999).

    Article  ADS  MATH  Google Scholar 

  14. B. Voisin, E. V. Ermanyuk, and J.-B. Flor, “Internal Wave Generation by Oscillation of a Sphere, with Application to Internal Tides,” J. Fluid Mech. 666, 308–357 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. N. H. Thomas and T. N. Stevenson, “A Similarity Solution for Viscous Internal Waves,” J. Fluid Mech. 54, 495–506 (1972).

    Article  ADS  MATH  Google Scholar 

  16. T. Dauxois and W. R. Young, “Near-Critical Reflection of Internal Waves,” J. Fluid Mech. 390, 271–295 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L. R. M. Maas and F. P. A. Lam, “Geometric Focusing of Internal Waves,” J. Fluid Mech. 300, 1–41 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. L. R. M. Maas, D. Benielli, J. Sommeria, and F. P. A. Lam, “Observation of an Internal Wave Attractor in a Confined, Stably Stratified Fluid,” Nature 388, 557–561 (1997).

    Article  ADS  Google Scholar 

  19. M. V. Berry, “Regularity and Chaos in Classical Mechanics, Illustrated by Three Deformations of a Circular Billiard,” Europ. J. Phys. 2, 91–102 (1981).

    Article  MathSciNet  Google Scholar 

  20. L. R. M. Maas, “Wave Attractors: Linear Yet Non Linear,” Int. J. Bifurcat. Chaos. 15(9), 2757–2782 (2005).

    Article  MATH  Google Scholar 

  21. C. Brouzet, E. V. Ermanyuk, S. Joubaud, et al., “Internal Wave Attractors: Different Scenarios of Instability,” J. Fluid Mech. 811, 544–568 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. E. Stern, “Trapping of Low Frequency Oscillations in an Equatorial Boundary Layer,” Tellus 15, 246–250 (1963).

    Article  ADS  Google Scholar 

  23. F. P. Bretherton, “Low Frequency Oscillations Trapped Near the Equator,” Tellus 16, 181–185 (1964).

    Article  ADS  Google Scholar 

  24. K. Stewartson, “On Trapped Oscillations of a Rotating Fluid in a Thin Spherical Shell,” Tellus 23, 506–510 (1971).

    Article  ADS  Google Scholar 

  25. K. Stewartson, “On Trapped Oscillations of a Rotating Fluid in a Thin Spherical Shell. II,” Tellus 24, 283–287 (1972).

    Article  ADS  Google Scholar 

  26. U. Harlander and L. R. M. Maas, “Characteristics and Energy Rays of Equatorially Trapped, Zonally Symmetric Internal Waves,” Meteorol. Zeitschrift. 15(4), 439–450 (2006).

    Article  ADS  Google Scholar 

  27. L. R. M. Maas and U. Harlander, “Equatorial Wave Attractors and Inertial Oscillations,” J. Fluid Mech. 570, 47–67 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Rieutord and L. Valdettaro, “Inertial Waves in a Rotating Spherical Shell,” J. Fluid Mech. 341, 77–99 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Rieutord, B. Georgeot, and L. Valdettaro, “Wave Attractors in Rotating Fluids: A Paradigm for Ill-Posed Cauchy Problems,” Phys. Rev. Lett. 85, 4277–4280 (2000).

    Article  ADS  Google Scholar 

  30. M. Rieutord, B. Georgeot, and L. Valdettaro, “Inertial Waves in a Rotating Spherical Shell: Attractors and Asymptotic Spectrum,” J. Fluid Mech. 435, 103–144 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  31. M. Rieutord, L. Valdettaro, and B. Georgeot, “Analysis of Singular Inertial Modes in a Spherical Shell: The Slender Toroidal Shell Model,” J. Fluid Mech. 463, 345–360 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  32. M. Rieutord and L. Valdettaro, “Viscous Dissipation by Tidally Forced Inertial Modes in a Rotating Spherical Shell,” J. Fluid Mech. 643, 363–394 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M. Hoff, U. Harlander, and C. Egbers, “Experimental Survey of Linear and Nonlinear Inertial Waves and Wave Instabilities in a Spherical Shell,” J. Fluid Mech. 789, 589–616 (2016).

    Article  ADS  Google Scholar 

  34. W. Tang and T. Peacock, “Lagrangian Coherent Structures and Internal Wave Attractors,” Chaos 20, 017508 (2010).

    Google Scholar 

  35. Y. Guo and M. Holmes-Cerfon, “Internal Wave Attractors over Random, Small-Amplitude Topography,” J. Fluid Mech. 787, 148–174 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. P. Echeverri, T. Yokossi, N. J. Balmforth, and T. Peacock, “Tidally Generated Internal-Wave Attractors between Double Ridges,” J. Fluid Mech. 669, 354–374 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. C. C. Eriksen, “Observations of Internal Wave Reflection on Sloping Bottoms,” J. Geophys. Res. 87, 525–538 (1982).

    Article  ADS  Google Scholar 

  38. A. M. M. Manders, and L. R. M. Maas, “On the Three-Dimensional Structure of the Inertial Wave Field in a Rectangular Basin with One Sloping Boundary,” Fluid Dyn. Res. 35, 1–21 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J. Hazewinkel, L. R. M. Maas, and S. Dalziel, “Tomographic Reconstruction of Internal Wave Patterns in a Paraboloid,” Exp. Fluids 50, 247–258 (2011).

    Article  Google Scholar 

  40. A. Rabiti and L. R. M. Maas, “Meridional Trapping and Zonal Propagation of Inertial Waves in a Rotating Fluid Shell,” J. Fluid Mech. 729, 445–470 (2013).

    Article  ADS  MATH  Google Scholar 

  41. G. Pillet, E. V. Ermanyuk, L. R. M. Maas, et al. “Internal Wave Attractors in Three-Dimensional Geometries: Trapping by Oblique Reflection,” J. Fluid Mech. 845, 203–225 (2018).

    Article  ADS  Google Scholar 

  42. L. R. M. Maas, “Wave Focusing and Ensuing Mean Flow due to Symmetry Breaking in Rotating Fluids,” J. Fluid Mech. 437, 13–28 (1995).

    ADS  MATH  Google Scholar 

  43. A. M. M. Manders and L. R. M. Maas, “Observations of Inertial Waves in a Rectangular Basin with One Sloping Boundary,” J. Fluid Mech. 493, 59–88 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. D. McEwan, “Degeneration of Resonantly Excited Standing Internal Gravity Waves,” J. Fluid Mech. 50, 431–448 (1971).

    Article  ADS  MATH  Google Scholar 

  45. K. D. Aldridge and A. Toomre, “Axisymmetric Inertial Oscillations of a Fluid in a Rotating Spherical Container,” J. Fluid Mech. 37(2), 307–323 (1969).

    Article  ADS  Google Scholar 

  46. K. Zhang, K. H. Chan, X. Liao, and J. M. Aurnou, “The Non-Resonant Response of Fluid in a Rapidly Rotating Sphere Undergoing Longitudinal Libration,” J. Fluid Mech. 720, 212–235 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. D. McEwan, “Inertial Oscillations in a Rotating Fluid Cylinder,” J. Fluid Mech. 30(3), 603–640 (1970).

    Article  ADS  Google Scholar 

  48. K. Stewartson and J. A. Rickard, “Pathological Oscillations of a Rotating Fluid,” J. Fluid Mech. 3(4), 759–773 (1969).

    Article  ADS  MATH  Google Scholar 

  49. L. Maggard, “Ein Beitrag zur Theorie der Internen Wellen als Storungen Geostrophischer Stromungen,” Deutsche Hydrograph. Z. 21, 241–278 (1968).

    Article  ADS  Google Scholar 

  50. F. P. A. Lam and L. R. M. Maas, “Internal Wave Focusing Revisited; A Reanalysis and New Theoretical Links,” Fluid Dyn. Res. 40, 95–122 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. J. Hazewinkel, N. Grisouard, and S. B. Dalziel, “Comparison of Laboratory and Numerically Observed Scalar Fields of an Internal Wave Attractor,” Europ. J. Mech., B: Fluids 30, 51–56 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. C. Brouzet, Internal Wave Attractors: from Geometrical Focusing to Nonlinear Energy Cascade and Mixing: PhD Thesis (Ecole Normale Superieure de Lyon, Lyon 2016).

    Google Scholar 

  53. U. Harlander and L. R. M. Maas, “Two Alternatives for Solving Hyperbolic Boundary Value Problems of Geophysical Fluid Dynamics,” J. Fluid Mech. 588, 331–351 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  54. U. Harlander and L. R. M. Maas, “Equatorial Wave Attractors and Inertial Oscillations,” J. Fluid Mech. 570, 47–67 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. J. Bajars, J. Frank, and L. R. M. Maas, “On the Appearance of Internal Wave Attractors due to an Initial or Parametrically Excited Disturbance,” J. Fluid Mech. 714, 283–311 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. S. Troitskaya, “Mathematical Analysis of Inertial Waves in Rectangular Basins with One Sloping Boundary,” Stud. Appl. Math. 139(3), 434–456 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Hazewinkel, P. van Breevoort, S. Dalziel, and L. R. M. Maas, “Observations on the Wavenumber Spectrum and Evolution of an Internal Wave Attractor,” J. Fluid Mech. 598, 373–382 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  58. N. Grisouard, C. Staquet, and I. Pairaud, “Numerical Simulation of a Two-Dimensional Internal Wave At-tractor,” J. Fluid Mech. 614, 1–14 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. C. Brouzet, I. N. Sibgatullin, E. V. Ermanyuk, et al., “Scale Effects in Internal Wave Attractors,” Phys. Rev. Fluids. 2, 114803 (2017).

  60. C. Brouzet, I. N. Sibgatullin, H. Scolan, et al., “Internal Wave Attractors Examined using Laboratory Experiments and 3D Numerical Simulations,” J. Fluid Mech. 793, 109–131 (2016).

    Article  ADS  Google Scholar 

  61. F. Beckebanze, C. Brouzet, I. N. Sibgatullin, and L. R. M. Maas, “Damping of Quasi-Two-Dimensional Internal Wave Attractors by Rigid-Wall Friction,” J. Fluid Mech. 841, 614–635 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  62. G. I. Ogilvie and D. N. C. Lin, “Tidal Dissipation in Rotating Giant Planets,” Astrophys. J. 610, 477–509 (2004).

    Article  ADS  Google Scholar 

  63. G. I. Ogilvie, “Wave Attractors and the Asymptotic Dissipation Rate of Tidal Disturbances,” J. Fluid Mech. 543, 19–44 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. B. Dintrans, M. Rieutord, and L. Valdettaro, “Gravito-Inertial Waves in a Rotating Stratified Sphere or Spherical Shell,” J. Fluid Mech. 398, 271–297 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. R. Baruteau and M. Rieutord, “Inertial Waves in a Differentially Rotating Spherical Shell,” J. Fluid Mech. 719, 47–81 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. H. Scolan, E. Ermanyuk, and T. Dauxois, “Nonlinear Fate of Internal Waves Attractors,” Phys. Rev. Lett. 110, 234501 (2013).

  67. O. M. Phillips, The Dynamics of the Upper Ocean (Cambridge Univ. Press, Cambridge, 1966).

    MATH  Google Scholar 

  68. O. M. Phillips, “Wave Interactions—the Evolution of an Idea,” J. Fluid Mech. 106, 215–227 (1981).

    Article  ADS  MATH  Google Scholar 

  69. A. D. McEwan, “The Kinematics of Stratified Mixing through Internal Wavebreaking,” J. Fluid Mech. 128, 47–57 (1983).

    Article  ADS  Google Scholar 

  70. A. D. McEwan, “Internal Mixing in Stratified Fluids,” J. Fluid Mech. 128, 59–80 (1983).

    Article  ADS  Google Scholar 

  71. B. Bourget, T. Dauxois, S. Joubaud, and P. Odier, “Experimental Study of Parametric Subharmonic Instability for Internal Plane Waves,” J. Fluid Mech. 723, 1–20 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. B. Bourget, H. Scolan, T. Dauxois, et al., “Finite-Size Effects in Parametric Subharmonic Instability,” J. Fluid Mech. 759, 739–750 (2014).

    Article  ADS  Google Scholar 

  73. H. H. Karimi and T. R. Akylas, “Parametric Subharmonic Instability of Internal Waves: Locally Confined Beams Versus Monochromatic Wave Trains,” J. Fluid Mech. 757, 381–402 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  74. C. R. Koudella and C. Staquet, “Instability Mechanisms of a Two-Dimensional Progressive Internal Gravity Wave,” J. Fluid Mech. 548, 165–196 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  75. B. R. Sutherland, “Internal Wave Instability: Wave-Wave and Wave-Induced Mean Flow Interactions,” Phys. Fluids 18, 074107 (2006).

  76. L. Jouve and G. I. Ogilvie, “Direct Numerical Simulations of an Inertial Wave Attractor in Linear and Nonlinear Regimes,” J. Fluid Mech. 745, 223–250 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  77. C. Brouzet, E. V. Ermanyuk, S. Joubaud, et al., “Energy Cascade in Internal Wave Attractors,” Europhys. Lett. 113, 44001.

  78. T. Dauxois, E. V. Ermanyuk, C. Brouzet, et al., “Abyssal Mixing in the Laboratory,” in The Ocean in Motion: Circulation, Waves, Polar Oceanography (Springer, 2018), pp. 221–237.

    Chapter  Google Scholar 

  79. E. Yarom and E. Sharon, “Experimental Observation of Steady Inertial Wave Turbulence in Deep Rotating Flows,” Nature Phys. 10, 510–514 (2014).

    Article  ADS  Google Scholar 

  80. C. H. McComas and M. G. Briscoe, “Bispectra of Internal Waves,” J. Fluid Mech. 97(1), 205–213 (1980).

    Article  ADS  MATH  Google Scholar 

  81. B. Favier, A. M. Grannan, M. Le Bars, and J. M. Aurnou, “Generation and Maintenance of Bulk Turbulence by Libration-Driven Elliptical Instability,” Phys. Fluids 27, 066601 (2015).

  82. S. Nazarenko, Wave Turbulence (Springer, Berlin-Heidelberg, 2011). (Lecture Notes Phys., Vol. 825.)

    Book  MATH  Google Scholar 

  83. C. J. R. Garrett and W. H. Munk, “Space-Time Scales of Internal Waves,” Geophys. Fluid Dyn. 2, 225–264 (1972).

    Article  ADS  Google Scholar 

  84. C. J. R. Garrett and W. H. Munk, “Internal Waves in the Ocean,” Annual Rev. Fluid Mech. 11, 339–369 (1979).

    Article  ADS  MATH  Google Scholar 

  85. Y. V. Lvov and E. G. Tabak, “Hamiltonian Formalism and the Garrett-Munk Spectrum of Internal Waves in the Ocean,” Phys. Rev. Lett. 87, 168501 (2001).

    Article  ADS  Google Scholar 

  86. Y. V. Lvov, K. L. Polzin, and E. G. Tabak, “Energy Spectra of the Oceans Internal Wave Field: Theory and Observations,” Phys. Rev. Lett. 92, 128501 (2004).

    Article  ADS  Google Scholar 

  87. A. A. Gelash, V. S. Lvov, and V. E. Zakharov, “Complete Hamiltonian Formalism for Inertial Waves in Rotating Fluids,” J. Fluid Mech. 831, 128–150 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  88. S. Gaultier, “Weak Inertial-Wave Turbulence Theory,” Phys. Rev. E 68(1), 015301 (2003).

    Google Scholar 

  89. J. Hazewinkel, C. Tsimitri, L. R. M. Maas, and S. Dalziel, “Observations on the Robustness of Internal Wave Attractor to Perturbations,” Phys. Fluids 22, 107102 (2010).

    Article  ADS  Google Scholar 

  90. L. Gostiaux, H. Didelle, S. Mercier, and T. Dauxois, “A Novel Internal Waves Generator,” Exp. Fluids 42, 123–130 (2007).

    Article  Google Scholar 

  91. M. J. Mercier, D. Martinand, M. Mathur, et al., “New Wave Generation,” J. Fluid Mech. 657, 308–334 (2010).

    Article  ADS  MATH  Google Scholar 

  92. S. Joubaud, J. Munroe, P. Odier, and T. Dauxois, “Experimental Parametric Subharmonic Instability in Stratified Fluids,” Phys. Fluids 24, 041703 (2012).

  93. M. Klein, T. Seelig, M. V. Kurgansky, et al., “Inertial Wave Excitation and Focusing in a Liquid Bounded by a Frustum and a Cylinder,” J. Fluid Mech. 751, 255–287 (2014).

    Article  ADS  Google Scholar 

  94. I. Sibgatullin, E. Ermanyuk, L. Maas, et al., “Direct Numerical Simulation of Three-Dimensional Inertial Wave Attractors,” in IEEE Xplore. Proc. of the 2017 Ivannikov ISPRAS Open Conf. (ISPRAS), Moscow, November 30 to December 1, 2017 (IEEE Computer Soc., Los Alamitos, 2017), pp. 137–143.

    Google Scholar 

  95. S. B. Dalziel, G. O. Hughes, and B. R. Sutherland, “Whole Field Density Measurements by Synthetic Schlieren,” Exp. Fluids 28, 322–335 (2000).

    Article  Google Scholar 

  96. R. J. Adrian, “Particle-Imaging Techniques for Experimental Fluid Dynamics,” Annual Rev. Fluid Mech. 23, 261–304 (1991).

    Article  ADS  Google Scholar 

  97. R. J. Adrian, “Twenty Years of Particle Image Velocimetry,” Exp. Fluids 39, 159–169 (2005).

    Article  Google Scholar 

  98. Y. Dossmann, B. Bourget, C. Brouzet, et al., “Mixing by Internal Waves Quantified using Combined PIV/PLIF Technique,” Exp. Fluids 57, 132 (2016).

    Article  Google Scholar 

  99. M. J. Mercier, N. B. Garnier, and T. Dauxois, “Reflection and Diffraction of Internal Waves Analysed with the Hilbert Transform,” Phys. Fluids 20(8), 086601 (2008).

    Google Scholar 

  100. C. Brouzet, T. Dauxois, E. Ermanyuk, et al., “Direct Numerical Simulation of Attractors of Internal Waves of a Stratified Fluid in a Trapezoidal Region with an Oscillating Vertical Wall,” Proc. Inst. Syst. Progr. RAN 26(5), 117–142 (2014).

    Article  Google Scholar 

  101. H. van Haren, “Sharp Near-Equatorial Transitions in Inertial Motions and Deep-Ocean Stepformation,” Geo-phys. Res. Lett. 32, L01605 (2005).

  102. H. M. van Aken, L. R. M. Maas, and H. van Haren, “Observations of Inertial Wave Events Near the Continental Slope of Goban Spur,” J. Phys. Oceanogr. 35, 1329–1340 (2005).

    Article  ADS  Google Scholar 

  103. T. Gerkema and V. I. Shrira, “Near-Inertial Waves on the “Non-Traditional” β-Plane,” J. Geophys. Res. 110, C01003 (2005).

  104. K. D. Aldridge and L. I. Lumb, “Inertial Waves Identified in Earth’s Fluid Outer Core,” Nature 325, 421–423 (1987).

    Article  ADS  Google Scholar 

  105. M. Rieutord, “Inertial Modes in the Liquid Core of the Earth,” Phys. Earth Planet. Inter. 91, 41–46 (1994).

    Article  ADS  Google Scholar 

  106. B. Dintrans and M. Rieutord, “Oscillations of a Rotating Star: a Non-Perturbative Theory,” Astron. Astrophys. 354, 86–98 (2000).

    ADS  Google Scholar 

  107. T. Gerkema, “Application of an Internal Tide Generation Model to Baroclinic Spring-Neap Cycles,” J. Geo-phys. Res. 107, (C9), 3124 (2002).

    Article  ADS  Google Scholar 

  108. P. Hosegood, H. van Haren, and C. Veth, “Mixing within the Interior of the Faeroe-Shetland Channel,” J. Marine Res. 63, 529–561 (2005).

    Article  Google Scholar 

  109. T. Gerkema and H. van Haren, “Absence of Internal Tidal Beams due to Non-Uniform Stratification,” J. Sea Res. 74, 2–7 (2012).

    Article  ADS  Google Scholar 

  110. G. Wang, Q. Zheng, M. Lin, and F. Qiao, “Three Dimensional Simulation of Internal Wave Attractors in the Luzon Strait,” Acta Oceanol. Sinica 34(11), 14–21 (2015).

    Article  Google Scholar 

  111. B. D. LaZerte, “The Dominating Higher Order Vertical Modes of the Internal Seiche in a Small Lake,” Limnol. Oceanogr. 25, 846–854.

  112. P. Fricker and H. Nepf, “Bathymetry, Stratification, and Internal Seiche Structure,” J. Geophys. Res. 105, 237–251 (2000).

    Article  Google Scholar 

  113. J. Wang, R. G. Ingram, and L. A. Mysak, “Variability of Internal Tides in the Laurentian Channel,” J. Geophys. Res. 96, 16859–16875 (1991).

    Article  ADS  Google Scholar 

  114. F. Cyr, D. Bourgault and P. S. Galbraith, “Behavior and Mixing of a Cold Intermediate Layer Near a Sloping Boundary,” Ocean Dyn. 65, 357–374 (2000).

    Article  ADS  Google Scholar 

  115. H. van Haren, L. R. M. Maas, and T. Gerkema, “Patchiness in Internal Tidal Beams,” J. Marine Res. 68, 237–257 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. N. Sibgatullin or E. V. Ermanyuk.

Additional information

Original Russian Text © I.N. Sibgatullin, E.V. Ermanyuk.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2019, Vol. 60, No. 2, pp. 113–136, March–April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibgatullin, I.N., Ermanyuk, E.V. Internal and Inertial Wave Attractors: A Review. J Appl Mech Tech Phy 60, 284–302 (2019). https://doi.org/10.1134/S002189441902010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189441902010X

Keywords

Navigation