Skip to main content
Log in

Nonexponential Photoluminescence Dynamics in an Inhomogeneous Ensemble of Excitons in WSe2 Monolayers

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The spectral and spatiotemporal dynamics of photoluminescence in monolayers of transition metal dichalcogenide WSe2 obtained by mechanical exfoliation on a Si/SiO2 substrate is studied over a wide range of temperatures and excitation powers. It is shown that the dynamics is nonexponential and, for times t exceeding ∼50 ps after the excitation pulse, is described by a dependence of the form 1/(t + t0). Photoluminescence decay is accelerated with a decrease in the temperature and in the energy of emitting states. It is shown that the observed dynamics cannot be described by a bimolecular recombination process, such as exciton—exciton annihilation. A model that describes the nonexponential photoluminescence dynamics by taking into account the spread of radiative recombination times of localized exciton states in a random potential gives good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Geim and I. V. Grigorieva, Nature (London, U.K.) 499, 419 (2013).

    Article  Google Scholar 

  2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  ADS  Google Scholar 

  3. Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  Google Scholar 

  4. K. F. Mak and J. Shan, Nat. Photon. 10, 216 (2016).

    Article  ADS  Google Scholar 

  5. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  ADS  Google Scholar 

  6. G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018).

    Article  ADS  Google Scholar 

  7. L. A. Chernozatonskii and A. A. Artyukh, Phys. Usp. 61, 2 (2018).

    Article  ADS  Google Scholar 

  8. E. E. Vdovin and Y. N. Khanin, JETP Lett. 108, 641 (2018).

    Article  ADS  Google Scholar 

  9. P. L. Pekh, P. V. Ratnikov, and A. P. Silin, JETP Lett. 111, 90 (2020).

    Article  ADS  Google Scholar 

  10. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  11. C. Robert, M. A. Semina, F. Cadiz, M. Manca, E. Courtade, T. Taniguchi, K. Watanabe, H. Cai, S. Tongay, B. Lassagne, P. Renucci, T. Amand, X. Marie, M. M. Glazov, and B. Urbaszek, Phys. Rev. Mater. 2, 011001(R) (2018).

    Article  ADS  Google Scholar 

  12. A. I. Prazdnichnykh, M. M. Glazov, L. Ren, C. Robert, B. Urbaszek, and X. Marie, arXiv:2010.01352 (2020).

  13. M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, and B. L. Liu, Phys. Status Solidi 252, 2349 (2015).

    Article  Google Scholar 

  14. D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, Nano Lett. 14, 5625 (2014).

    Article  ADS  Google Scholar 

  15. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, Phys. Rev. B 89, 125427 (2014).

    Article  ADS  Google Scholar 

  16. S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, Phys. Rev. B 90, 155449 (2014).

    Article  ADS  Google Scholar 

  17. M. J. Shin, D. H. Kim, and D. Lim, J. Korean Phys. Soc. 65, 2077 (2014).

    Article  ADS  Google Scholar 

  18. Y. Yu, Y. Yu, C. Xu, A. Barrette, K. Gundogdu, and L. Cao, Phys. Rev. B 93, 201111 (2016).

    Article  ADS  Google Scholar 

  19. G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, J. Lupton, R. Bratschitsch, C. Schüller, and T. Korn, Phys. Status Solidi RRL 11, 1700131 (2017).

    Article  Google Scholar 

  20. Y. Lee, G. Ghimire, S. Roy, Y. Kim, C. Seo, A. K. Sood, J. I. Jang, and J. Kim, ACS Photon. 5, 2904 (2018).

    Article  Google Scholar 

  21. C. Robert, T. Amand, F. Cadiz, D. Lagarde, E. Courtade, M. Manca, T. Taniguchi, K. Watanabe, B. Urbaszek, and X. Marie, Phys. Rev. B 96, 155423 (2017).

    Article  ADS  Google Scholar 

  22. F. Cadiz, C. Robert, E. Courtade, M. Manca, L. Martinelli, T. Taniguchi, K. Watanabe, T. Amand, A. C. H. Rowe, D. Paget, B. Urbaszek, and X. Marie, Appl. Phys. Lett. 112, 152106 (2018).

    Article  ADS  Google Scholar 

  23. Y. Hoshi, T. Kuroda, M. Okada, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, R. Kitaura, and T. Machida, Phys. Rev. B 95, 241403 (2017).

    Article  ADS  Google Scholar 

  24. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS Nano 7, 791 (2013).

    Article  Google Scholar 

  25. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, Sci. Rep. 3, 1608 (2013).

    Article  Google Scholar 

  26. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and R. Bratschitsch, Opt. Express 21, 4908 (2013).

    Article  ADS  Google Scholar 

  27. T. Yan, X. Qiao, X. Liu, P. Tan, and X. Zhang, Appl. Phys. Lett. 105, 101901 (2014).

    Article  ADS  Google Scholar 

  28. J. Huang, T. B. Hoang, and M. H. Mikkelsen, Sci. Rep. 6, 22414 (2016).

    Article  ADS  Google Scholar 

  29. J. Jadczak, J. Kutrowska-Girzycka, P. Kapuściński, Y. S. Huang, A. Wójs, and L. Bryja, Nanotechnology 28, 395702 (2017).

    Article  Google Scholar 

  30. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, Nanoscale 7, 10421 (2015).

    Article  ADS  Google Scholar 

  31. F. Cadiz, E. Courtade, C. Robert, et al., Phys. Rev. X 7, 21026 (2017).

    Google Scholar 

  32. J. Wang, Y. Guo, Y. Huang, H. Luo, X. Zhou, C. Gu, and B. Liu, Appl. Phys. Lett. 115, 131902 (2019).

    Article  ADS  Google Scholar 

  33. C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, Phys. Rev. B 93, 205423 (2016).

    Article  ADS  Google Scholar 

  34. D. J. Huntley, J. Phys.: Condens. Matter 18, 1359 (2006).

    ADS  Google Scholar 

  35. J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

    Article  ADS  Google Scholar 

  36. A. K. Jonscher and A. de Polignac, J. Phys. C Solid State Phys. 17, 6493 (1984).

    Article  ADS  Google Scholar 

  37. A. M. Gilinsky and K. S. Zhuravlev, Appl. Phys. Lett. 79, 3455 (2001).

    Article  ADS  Google Scholar 

  38. V. Cardin, L. I. Dion-Bertrand, P. Grégoire, H. P. T. Nguyen, M. Sakowicz, Z. Mi, C. Silva, and R. Leonelli, Nanotechnology 24, 045702 (2013).

    Article  ADS  Google Scholar 

  39. A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, Phys. Rev. B 68, 045331 (2003).

    Article  ADS  Google Scholar 

  40. C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, Phys. Rev. B 82, 085305 (2010).

    Article  ADS  Google Scholar 

  41. T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, Appl. Phys. Lett. 85, 1946 (2004).

    Article  ADS  Google Scholar 

  42. V. S. Krivobok, A. V. Kolobov, S. E. Dimitrieva, D. F. Aminev, S. I. Chentsov, S. N. Nikolaev, V. P. Martovitskii, and E. E. Onishchenko, JETP Lett. 112, 471 (2020).

    Article  ADS  Google Scholar 

  43. X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, Phys. Rev. Lett. 115, 257403 (2015).

    Article  ADS  Google Scholar 

  44. T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, Phys. Rev. B 94, 165301 (2016).

    Article  ADS  Google Scholar 

  45. G. Moody, J. Schaibley, and X. Xu, J. Opt. Soc. Am. B 33, C39 (2016).

    Article  Google Scholar 

  46. G. Wang, C. Robert, M. M. Glazov, F. Cadiz, E. Courtade, T. Amand, D. Lagarde, T. Taniguchi, K. Watanabe, B. Urbaszek, and X. Marie, Phys. Rev. Lett. 119, 047401 (2017).

    Article  ADS  Google Scholar 

  47. V. V. Belykh and M. V. Kochiev, Phys. Rev. B 92, 045307 (2015).

    Article  ADS  Google Scholar 

  48. Z. Li, T. Wang, C. Jin, et al., ACS Nano 13, 14107 (2019).

    Article  Google Scholar 

  49. G.-H. Peng, P.-Y. Lo, W.-H. Li, Y.-C. Huang, Y.-H. Chen, C.-H. Lee, C.-K. Yang, and S.-J. Cheng, Nano Lett. 19, 2299 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to S.N. Nikolaev for providing WSe2 crystals and to M.M. Glazov and M.L. Skorikov for fruitful discussions and valuable advice. Substrate preparation, flake transfer, and localization of monolayer samples were carried out at the Shared Facility Center of the Lebedev Physical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Akmaev or V. V. Belykh.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 10, pp. 650–657.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-32-20202).

Translated by M. Skorikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akmaev, M.A., Kochiev, M.V., Duleba, A.I. et al. Nonexponential Photoluminescence Dynamics in an Inhomogeneous Ensemble of Excitons in WSe2 Monolayers. Jetp Lett. 112, 607–614 (2020). https://doi.org/10.1134/S0021364020220063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020220063

Navigation