Skip to main content
Log in

Two-Dimensional Coulomb Glass as a Model for Vortex Pinning in Superconducting Films

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A glass model of vortex pinning in highly disordered thin superconducting films in magnetic fields BHc2 at low temperatures is proposed. Strong collective pinning of a vortex system realized in disordered superconductors that are close to the quantum phase transition to the insulating phase, such as InOx, NbN, TiN, MoGe, and nanogranular aluminum, is considered theoretically for the first time. Utilizing the replica trick developed for the spin glass theory, we demonstrate that such vortex system is in non-ergodic state of glass type with a large kinetic inductance per square LK. The distribution function of local pinning energies is calculated, and it is shown that it possesses a wide gap; i.e., the probability to find a weakly pinned vortex is extremely low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sacépe, M. V. Feigel’man, and T. M. Klapwijk, Nat. Phys. 16, 734 (2020). https://doi.org/10.1038/s41567-020-0905-x

    Article  Google Scholar 

  2. S. Misra, L. Urban, M. Kim, G. Sambandamurthy, and A. Yazdani, Phys. Rev. Lett. 110, 037002 (2013).

    Article  ADS  Google Scholar 

  3. B. Sacépé, J. Seidemann, F. Gay, K. Davenport, A. Rogachev, M. Ovadia, K. Michaeli, and M. V. Feigel’man, Nat. Phys. 15, 48 (2019).

    Article  Google Scholar 

  4. M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas, Ann. Phys. 325, 1390 (2010).

    Article  ADS  Google Scholar 

  5. A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

    Google Scholar 

  6. A. I. Larkin, Sov. Phys. JETP 31, 784 (1970).

    ADS  Google Scholar 

  7. A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).

    Article  ADS  Google Scholar 

  8. H. Brandt, J. Low Temp. Phys. 26, 709 (1977).

    Article  ADS  Google Scholar 

  9. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  10. W.-K. Kwok, U. Welp, A. Glatz, A. E. Koshelev, K. J. Kihlstrom, and G. W. Crabtree, Rep. Prog. Phys. 79, 116501 (2016).

    Article  ADS  Google Scholar 

  11. R. Labusch, Cryst. Latt. Defects 1, 1 (1969).

    Google Scholar 

  12. G. Blatter, V. B. Geshkenbein, and J. A. G. Koopmann, Phys. Rev. Lett. 92, 067009 (2004).

    Article  ADS  Google Scholar 

  13. M. Buchacek, R. Willa, V. B. Geshkenbein, and G. Blatter, Phys. Rev. B 98, 094510 (2018).

    Article  ADS  Google Scholar 

  14. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).

    Article  ADS  Google Scholar 

  15. A. L. Efros, J. Phys. C 9, 2021 (1976).

    Article  ADS  Google Scholar 

  16. U. C. Tauber and D. R. Nelson, Phys. Rev. B 52, 16106 (1995).

    Article  ADS  Google Scholar 

  17. A. I. Larkin and D. E. Khmelniskii, Sov. Phys. JETP 56, 647 (1982).

    Google Scholar 

  18. M. Müeller and L. B. Ioffe, Phys. Rev. Lett. 93, 256403 (2004).

    Article  ADS  Google Scholar 

  19. S. Pankov and V. Dobrosavljevic, Phys. Rev. Lett. 94, 046402 (2005).

    Article  ADS  Google Scholar 

  20. M. Müeller and S. Pankov, Phys. Rev. B 75, 144201 (2007).

    Article  ADS  Google Scholar 

  21. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    MATH  Google Scholar 

  22. D. Gross, I. Kanter, and H. Sompolinsky, Phys. Rev. Lett. 55, 304 (1985).

    Article  ADS  Google Scholar 

  23. D. Carpentier and P. le Doussal, Phys. Rev. E 63, 026110 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to V.B. Geshkenbein, A.S. Ioselevich, and Y.V. Fyodorov for numerous useful discussions.

Funding

The work was supported by the Russian Science Foundation (project no. 20-12-00361) and by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Poboiko.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 4, pp. 251–257.

Supplemental Material to the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poboiko, I., Feigel’man, M.V. Two-Dimensional Coulomb Glass as a Model for Vortex Pinning in Superconducting Films. Jetp Lett. 112, 234–240 (2020). https://doi.org/10.1134/S002136402016002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402016002X

Navigation