Skip to main content
Log in

Mössbauer Study of the Magnetic Transition in ϵ-Fe2O3 Nanoparticles Using Synchrotron and Radionuclide Sources

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Nuclear γ-resonance experiments with energy and time resolved detection are carried out with ϵ-F2O3 nanoparticles and a 57Co(Rh) laboratory Mössbauer source of γ radiation and a 14.4125 keV synchrotron radiation source on the ID18 beamline (ESRF) in the temperature range of 4–300 K. Both methods show a tremendous increase in the hyperfine field in tetrahedrally coordinated iron positions during the magnetic transition in the range of 80–150 K. As a result, the splitting of the quantum beat peaks in the nuclear scattering spectra is observed in the time interval of 20–170 ns with a periodicity of ∼ 30 ns. In addition, the first quantum beat is slightly shifted to shorter times. A correlation between the quadrupole shift and the orbital angular momentum of iron in ϵ-F2O3 nanoparticles is found. The magnetic transition leads to the rotation of the magnetic moment in the tetrahedral positions of iron around the axis of the electric field gradient by an angle of 44°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu. V. Shvyd’ko, S. L. Popov, and G. V. Smirnov, JETP Lett. 53, 217 (1991).

    Google Scholar 

  2. R. Rüffer and A. I. Chumakov, Hyperfine Interact. 97, 589 (1996).

    Article  ADS  Google Scholar 

  3. R. Röhlsberger, J. Bansmann, V. Senz, K. L. Jonas, A. Bettac, K. H. Meiwes-Broer, and O. Leupold, Phys. Rev. B 67, 245412 (2003).

    Article  ADS  Google Scholar 

  4. E. Bykova, L. Dubrovinsky, N. Dubrovinskaia, M. Bykov, C. McCammon, S. V. Ovsyannikov, H. P. Liermann, I. Kupenko, A. I. Chumakov, R. Rüffer, M. Hanfland, and V. Prakapenka, Nat. Commun. 7, 10661 (2016).

    Article  ADS  Google Scholar 

  5. M. Mikolasek, K. Ridier, D. Bessas, V. Cerantola, G. Félix, G. Chaboussant, M. Piedrahita-Bello, E. Angulo-Cervera, L. Godard, W. Nicolazzi, L. Salmon, G. Molnár, and A. Bousseksou, J. Phys. Chem. Lett. 10, 1511 (2019).

    Article  Google Scholar 

  6. J. L. García-Muñoz, A. Romaguera, F. Fauth, J. Nogués, and M. Gich, Chem. Mater. 29, 9705 (2017).

    Article  Google Scholar 

  7. I. Sergueev, A. I. Chumakov, T. D. Beaume-Dang, R. Rüffer, C. Strohm, and U. van Bürck, Phys. Rev. Lett. 99, 097601 (2007).

    Article  ADS  Google Scholar 

  8. M. Herlitschke, S. Disch, I. Sergueev, K. Schlage, E. Wetterskog, L. Bergström, and R. P. Hermann, J. Phys.: Conf. Ser. 711, 012002 (2016).

    Google Scholar 

  9. J. Tuček, P. Tuček, J. Čuda, J. Filip, J. Pechoušek, L. Machala, and R. Zbořil, AIP Conf. Proc. 1489, 56 (2012).

    Article  ADS  Google Scholar 

  10. M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, C. Ritter, and V. Hardy, Chem. Mater. 18, 3889 (2006).

    Article  Google Scholar 

  11. Y.-C. Tseng, N. M. Souza-Neto, D. Haskel, M. Gich, C. Frontera, A. Roig, M. van Veenendaal, and J. Nogués, Phys. Rev. B 79, 094404 (2009).

    Article  ADS  Google Scholar 

  12. D. A. Balaev, A. A. Dubrovskiy, K. A. Shaykhutdinov, O. A. Bayukov, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 114, 163911 (2013).

    Article  ADS  Google Scholar 

  13. Yu. V. Knyazev, D. A. Balaev, V. L. Kirillov, O. A. Bayukov, and O. N. Mart’yanov, JETP Lett. 108, 527 (2018).

    Article  ADS  Google Scholar 

  14. E. Tronc, C. Chanéac, J. P. Jolivet, and J. M. Greneche, J. Solid State Chem. 139, 93 (1998).

    Article  ADS  Google Scholar 

  15. S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Yu. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman, and O. N. Mart’yanov, Ceram. Int. 44, 17852 (2018).

    Article  Google Scholar 

  16. G. V. Smirnov, Hyperfine Interact. 125, 91 (2000).

    Article  Google Scholar 

  17. A. Q. R. Baron, Hyperfine Interact. 125, 29 (2000).

    Article  Google Scholar 

  18. Yu. V. Shvyd’ko, Hyperfine Interact. 123, 275 (1999).

    Article  Google Scholar 

  19. A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 118, 213901 (2015).

    Article  ADS  Google Scholar 

  20. J.-L. Rehspringer, S. Vilminot, D. Niznansky, K. Zaveta, C. Estournes, and M. Kurmoo, Hyperfine Interact. 166, 475 (2005).

    Article  ADS  Google Scholar 

  21. S. Mørup and H. Topsoe, Appl. Phys. 11, 63 (1976).

    Article  ADS  Google Scholar 

  22. J. Kohout, P. Brázda, K. Závěta, D. Kubániová, T. Kmječ, L. Kubíčková, M. Klementová, E. Šantavá, and A. Lančok, J. Appl. Phys. 171, 17D505 (2015).

    Article  Google Scholar 

  23. M. Gich, A. Roig, C. Frontera, E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martín y Marero, and J. Nogues, J. Appl. Phys. 98, 044307 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Nuclear forward scattering spectra were obtained within the SC-4708 experiment at the European Synchrotron Radiation Facility.

Funding

This work was supported by the Russian Science Foundation (project no. 17-12-01111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Knyazev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 9, pp. 614–619.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, Y.V., Chumakov, A.I., Dubrovskiy, A.A. et al. Mössbauer Study of the Magnetic Transition in ϵ-Fe2O3 Nanoparticles Using Synchrotron and Radionuclide Sources. Jetp Lett. 110, 613–617 (2019). https://doi.org/10.1134/S0021364019210082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019210082

Navigation