Skip to main content
Log in

Features of the electronic spectrum and optical absorption of ultrathin Bi2Se3 films

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electronic spectra and relative permittivity of ultrathin (1–3 QL) films of Bi2Se3 topological insulator have been calculated by the density functional theory. The calculated spectra exhibit a characteristic feature: the range of 0.0–0.9 eV below the Fermi level contains two doubly degenerate valence bands (“U-bands”), which are geometrically congruent to low-lying spectral branches in the conduction band. It has been shown that the saturation of optical absorption can result in a significant rearrangement of the electronic structure and properties in the near infrared spectral range in the considered film. In particular, the semiconductor (in the absence of interaction with light) type of conductivity of the film can be changed to the metallic type of conductivity strongly nonlinear in the intensity of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  2. L. Fu and C. L. Kane, Phys. Rev. B 76, 45302 (2007).

    Article  ADS  Google Scholar 

  3. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  4. X.-L. Qi and S.-C. Zhang, Phys. Today (2010). doi 10.1063/1.3293411

    Google Scholar 

  5. D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459 (2012).

    Article  Google Scholar 

  6. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  7. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 2 (2009).

    Article  Google Scholar 

  8. Y. L. Chenet, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, and D. H. Lu, Science 329, 659 (2010).

    Article  ADS  Google Scholar 

  9. P. Cheng, C. Song, T. Zhang, et al., Phys. Rev. Lett. 105, 76801 (2010).

    Article  ADS  Google Scholar 

  10. L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Phys. 7, 32 (2010).

    Article  Google Scholar 

  11. J. Sun and D. J. Singh, J. Appl. Phys. 121, 064301 (2017).

    Article  ADS  Google Scholar 

  12. M. Eddrief, F. Vidal, and B. Gallas, J. Phys. D: Appl. Phys. 49, 505304 (2016).

    Article  Google Scholar 

  13. S. Kim, D. H. Shin, J. H. Kim, C. W. Jang, J. W. Park, H. Lee, S.-H. Choi, S. H. Kim, K.-J. Yee, and N. Bansal, Nanotechnology 27, 045705 (2016).

    Article  ADS  Google Scholar 

  14. Y. Wang, S. Liu, J. Yuan, P. Wang, J. Chen, J. Li, S. Xiao, Q. Bao, Y. Gao, and J. He, Sci. Rep. (2016). doi 10.1038/srep33070

    Google Scholar 

  15. S. G. Egorova, V. I. Chernichkin, L. I. Ryabova, E. P. Skipetrov, L. V. Yashina, S. N. Danilov, S. D. Ganichev, and D. R. Khokhlov, Sci. Rep. (2015). doi 10.1038/srep11540

    Google Scholar 

  16. S. V. Eremeev, I. V. Silkin, T. V. Menshchikova, A. P. Protogenov, and E. V. Chulkov, JETP Lett. 96, 780 (2012).

    Article  ADS  Google Scholar 

  17. D. Niesner, Th. Fauster, S. V. Eremeev, T. V. Menshchikova, Yu. M. Koroteev, A. P. Protogenov, E. V. Chulkov, O. E. Tereshchenko, K. A. Kokh, O. Alekperov, A. Nadjafov, and N. Mamedov, Phys. Rev. B 86, 205403 (2012).

    Article  ADS  Google Scholar 

  18. D. Niesner, S. Otto, Th. Fauster, E. V. Chulkov, S. V. Eremeev, E. Tereshchenko, and K. A. Kokh, J. Electron. Spectrosc. Rel. Phenom. 195, 258 (2014).

    Article  Google Scholar 

  19. P. Di Pietro, M. Ortolani, O. Limaj, A. di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. (2013). doi doi 10.1038/nnano.2013.134

    Google Scholar 

  20. V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, in Proceedings of the Ginzburg Centennial Conference on Physics, Lebedev Phys. Inst., Moscow, May 29–June 3, 2017, p. 70.

    Google Scholar 

  21. Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, Opt. Commun. (2015). doi 10.1016/j.optcom.2015.11.061i

    Google Scholar 

  22. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, Wien2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Tech. Univ. Wien, Austria, 2001).

    Google Scholar 

  23. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  24. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  26. National Institute for Materials Science, Tsukuba, Japan, NIMS Materials Database. http://crystaldb. nims.go.jp/crystdb. Accessed January 1, 2017.

  27. Y. Zhang, K. He, C. Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nat. Phys. 6, 584 (2010).

    Article  Google Scholar 

  28. J. Sun and D. J. Singh, J. Appl. Phys. 121, 064301 (2017).

    Article  ADS  Google Scholar 

  29. Yu. A. Uspenskii, E. T. Kulatov, and S. V. Halilov, Phys. Rev. B 54, 474 (1996).

    Article  ADS  Google Scholar 

  30. M. Eddrief, F. Vidal, and B. Gallas, J. Phys. D: Appl. Phys. 49, 505304 (2016).

    Article  Google Scholar 

  31. E. Garmire, IEEE J. Sel. Top. Quantum Electron. 6, 6 (2000).

    Article  Google Scholar 

  32. V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, Sov. Phys. JETP 30, 117 (1969).

    ADS  Google Scholar 

  33. A. S. Aleksandrov, V. F. Elesin, V. G. Mikhailov, I. A. Poluektov, and Yu. M. Popov, Sov. J. Quantum Electron. 8, 207 (1978).

    Article  ADS  Google Scholar 

  34. G. Landolt, S. Schreyeck, S. V. Eremeev, B. Slomski, S. Muff, J. Osterwalder, E. V. Chulkov, C. Gould, G. Karczewski, K. Brunner, H. Buhmann, L. W. Molenkamp, and J. H. Dil, Phys. Rev. Lett. 112, 057601 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tugushev.

Additional information

Original Russian Text © V.V. Tugushev, E.T. Kulatov, K.M. Golant, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 7, pp. 409–416.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugushev, V.V., Kulatov, E.T. & Golant, K.M. Features of the electronic spectrum and optical absorption of ultrathin Bi2Se3 films. Jetp Lett. 106, 422–428 (2017). https://doi.org/10.1134/S0021364017190122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017190122

Navigation