Skip to main content
Log in

Capacitance spectroscopy of a system of gapless Dirac fermions in a HgTe quantum well

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Information on the density of states of two-dimensional Dirac fermions in a 6.6-nm-thick HgTe quantum well that corresponds to a transition from the direct to inverted spectrum is obtained for the first time by means of capacitance measurements. It is found that the density of states of Dirac electrons is a linear function of the Fermi energy at E F > 30 meV with the corresponding velocity vDF = 8.2 × 105 m/s. At lower energies, this dependence deviates from the linear law, indicating a strong effect of disorder, which is associated with fluctuations of a built-in charge, on the density of states of the studied system near the Dirac point. At negative energies, a sharp increase in the density of states is observed, which is associated with the tail of the density of states of valleys of heavy holes. The described behavior is in agreement with the proposed model, which includes both the features of the real spectrum of Dirac fermions and the effect of the fluctuation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. E. Raichev, Phys. Rev. B 85, 045310 (2012).

    Article  ADS  Google Scholar 

  2. B. Büttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brüne, H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).

    Article  Google Scholar 

  3. G. Tkachov, C. Thienel, V. Pinneker, B. Büttner, C. Brüne, H. Buhmann, L. W. Molenkamp, and E. M. Hankiewicz, Phys. Rev. Lett. 106, 076802 (2011).

    Article  ADS  Google Scholar 

  4. D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, JETP Lett. 96, 730 (2012).

    Article  ADS  Google Scholar 

  5. A. A. Dobretsova, Z. D. Kvon, L. S. Braginskii, M. V. Entin, and N. N. Mikhailov, JETP Lett. 104, 388 (2016).

    Article  ADS  Google Scholar 

  6. D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretskii, JETP Lett. 100, 724 (2014).

    Article  ADS  Google Scholar 

  7. D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretskii, S. Weishäupl, Y. Krupko, and J.-C. Portal, Appl. Phys. Lett. 105, 132102 (2014).

    Article  ADS  Google Scholar 

  8. Z. D. Kvon, C. N. Danilov, D. A. Kozlov, K. Zoth, N. N. Mikhailov, S. A. Dvoretskii, and S. D. Ganichev, JETP Lett. 94, 816 (2011).

    Article  ADS  Google Scholar 

  9. P. Olbrich, C. Zoth, P. Vierling, K.-M. Dantscher, G. V. Budkin, S. A. Tarasenko, V. V. Bel’kov, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, Phys. Rev. B 87, 235439 (2013).

    Article  ADS  Google Scholar 

  10. C. Zoth, P. Olbrich, P. Vierling, K.-M. Dantscher, V. V. Bel’kov, M. A. Semina, M. M. Glazov, L. E. Golub, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, Phys. Rev. B 90, 205415 (2014).

    Article  ADS  Google Scholar 

  11. A. Shuvaev, V. Dziom, Z. D. Kvon, N. N. Mikhailov, and A. Pimenov, Phys. Rev. Lett. 117, 117401 (2016).

    Article  ADS  Google Scholar 

  12. G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, M. O. Nestoklon, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 93, 155304 (2016).

    Article  ADS  Google Scholar 

  13. F. Stern, Appl. Phys. Lett. 43, 974 (1983).

    Article  ADS  Google Scholar 

  14. T. Smith and B. Goldberg, Phys. Rev. B 32, 2696 (1985).

    Article  ADS  Google Scholar 

  15. S. A. Tarasenko, M. V. Durnev, M. O. Nestoklon, E. L. Ivchenko, J.-W. Luo, and A. Zunger, Phys. Rev. B 91, 81302 (2015).

    Article  ADS  Google Scholar 

  16. L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, Phys. Rev. Lett. 105, 136801 (2010).

    Article  ADS  Google Scholar 

  17. D. A. Kozlov, D. Bauer, J. Ziegler, R. Fischer, M. L. Savchenko, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Phys. Rev. Lett. 116, 166802 (2016).

    Article  ADS  Google Scholar 

  18. M. V. Durnev and S. A. Tarasenko, Phys. Rev. B 93, 075434 (2016).

    Article  ADS  Google Scholar 

  19. T. Kernreiter, M. Governale, and U. Zülicke, Phys. Rev. B 93, 241304(R) (2016).

  20. G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 89, 165311 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kozlov.

Additional information

Original Russian Text © D.A. Kozlov, M.L. Savchenko, J. Ziegler, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretskii, D. Weiss, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 12, pp. 865–870.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, D.A., Savchenko, M.L., Ziegler, J. et al. Capacitance spectroscopy of a system of gapless Dirac fermions in a HgTe quantum well. Jetp Lett. 104, 859–863 (2016). https://doi.org/10.1134/S0021364016240103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016240103

Navigation