Skip to main content
Log in

Picosecond time of spontaneous emission in plasmonic patch nanoantennas

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A significant (to 12 ps) decrease in the lifetime of excited states of quantum emitters in the form of three-layer colloidal quantum dots (CdSe/CdS/ZnS) placed in an aluminum–triangular silver nanoprism cavity (patch nanoantenna) has been experimentally demonstrated. The decrease in the time of spontaneous emission of quantum dots has been explained by the Purcell effect. The Purcell coefficient for an emitter in the resonator has been found to be 625. Such a significant increase in the rate of spontaneous emission in the patch nanoantenna is due to an increase in the local density of photon states in the plasmonic cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Vitukhnovskii, A. A. Vashchenko, V. S. Lebedev, A. S. Selyukov, R. B. Vasil’ev, and M. S. Sokolikova, JETP Lett. 100, 86 (2014).

    Article  ADS  Google Scholar 

  2. R. Zhao, M. Gong, H. Zhu, Y. Chen, Y. Tang, and T. Lu, Nanoscale 6, 9273 (2014).

    Article  ADS  Google Scholar 

  3. A. G. Vitukhnovsky, A. S. Shul’ga, S. A. Ambrozevich, E. M. Khokhlov, R. B. Vasiliev, D. N. Dirin, and V. I. Yudson, Phys. Lett. A 373, 2287 (2009).

    Article  ADS  Google Scholar 

  4. A. G. Vitukhnovsky, V. S. Lebedev, A. S. Selyukov, A. A. Vashchenko, R. B. Vasiliev, and M. S. Sokolikova, Chem. Phys. Lett. 619, 185 (2015).

    Article  ADS  Google Scholar 

  5. J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, Adv. Mater. 25, 4986 (2013).

    Article  Google Scholar 

  6. S. Gupta and E. Waks, Opt. Express 22, 3013 (2014).

    Article  ADS  Google Scholar 

  7. E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946).

    Article  ADS  Google Scholar 

  8. V. S. C. M. Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).

    Article  ADS  Google Scholar 

  9. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).

    Article  ADS  Google Scholar 

  10. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaitre, and P. Senellart, Nature Commun. 4, 1425 (2013).

    Article  ADS  Google Scholar 

  11. M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, Nature Mater. 13, 279 (2014).

    Article  ADS  Google Scholar 

  12. A. David, H. Benisty, and C. Weisbuch, Photon. Rep. Prog. Phys. 75, 126501 (2012).

    Article  ADS  Google Scholar 

  13. C. T. Yuan, Y. C. Wang, H. W. Cheng, H. S. Wang, M. Y. Kuo, M. H. Shih, and J. Tang, J. Phys. Chem. C 117, 12762 (2013).

    Article  Google Scholar 

  14. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, Nano Lett. 13, 1516 (2013).

    Article  ADS  Google Scholar 

  15. D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, Nano Lett. 1, 1049 (2011).

    Article  ADS  Google Scholar 

  16. V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, Nano Lett. 11, 4907 (2011).

    Article  ADS  Google Scholar 

  17. R. Esteban, T. V. Teperik, and J. J. Greffet, Phys. Rev. Lett. 104, 026802 (2010).

    Article  ADS  Google Scholar 

  18. J. Z. Niu, H. Shen, C. Zhou, W. Xu, X. Li, H. Wang, S. Lou, Z. Du, and L. S. Li, Dalton Trans. 39, 3308 (2010).

    Article  Google Scholar 

  19. S. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).

    Article  ADS  Google Scholar 

  20. S. Coe, W. Woo, M. Bawendi, and V. Bulovic, Nature 420, 800 (2002).

    Article  ADS  Google Scholar 

  21. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010; Pan Stanford, Singapore, 2011).

    Google Scholar 

  22. M. R. Langille, M. L. Personick, and C. A. Mirkin, Angew. Chem. Int. Ed. 52, 13910 (2013).

    Article  Google Scholar 

  23. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).

    Article  ADS  Google Scholar 

  24. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  Google Scholar 

  25. Z. Wu and Y. Zheng, Plasmonics (Springer Science, New York, 2015).

    Google Scholar 

  26. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nature Photon. 8, 835 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Eliseev.

Additional information

Original Russian Text © S.P. Eliseev, A.G. Vitukhnovsky, D.A. Chubich, N.S. Kurochkin, V.V. Sychev, A.A. Marchenko, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 2, pp. 88–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseev, S.P., Vitukhnovsky, A.G., Chubich, D.A. et al. Picosecond time of spontaneous emission in plasmonic patch nanoantennas. Jetp Lett. 103, 82–86 (2016). https://doi.org/10.1134/S0021364016020053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016020053

Keywords

Navigation