Skip to main content
Log in

Multicomponent Quasi-Elastic Light Scattering in Na1/2Bi1/2TiO3 as Studied by Broadband Brillouin Scattering

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Brillouin light scattering studies of the low-frequency region of vibrational spectra of a partially disordered ferroelectric crystal Na1/2Bi1/2TiO3 (NBT) from 300 to 850 K are presented. It is shown that the light scattering spectra contain a multicomponent quasi-elastic scattering (QELS) component observed in a broad frequency range, from 800 to 0.7 GHz. Reconstruction of the inelastic light scattering spectra in NBT in the frequency region from 0.7 to 800 GHz did not reveal relaxation processes (α and β relaxations) typical of disordered compounds (glasses, supercooled liquids, etc.). The fractal approach also proved to be inapplicable to the description of QELS in NBT. Detailed analysis of the Brillouin spectra with different free spectral ranges (“frequency windows”) showed that different contributions to the quasi-elastic light scattering manifest themselves in different frequency windows. These contributions are associated with the structural phase transitions and other processes responsible for the emergence of QELS (domain structure evolution, heterophase fluctuations, etc.). Thus, we suggest a new approach to the analysis of the temperature behavior of quasi-elastic scattering. It allows one to study the critical dynamics of the crystal lattice and the nonphonon contributions into vibrational spectra of partially disordered crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N. Kraynik, Sov. Phys. Solid State 11, 2421 (1969).

    Google Scholar 

  2. S. M. Emelyanov, I. P. Raevskiy, V. G. Smotrakov, and F. I. Savenko, Sov. Phys. Solid State 26, 1151 (1984).

    Google Scholar 

  3. K. Rodeler, I. Franke, A. M. Glazer, P. A. Thomas, S. Miga, and J. Suchanicz, J. Phys.: Condens. Matter 14, 5399 (2002).

    ADS  Google Scholar 

  4. G. O. Jones and P. A. Thomas, Acta Crystallogr. B 58, 168 (2002).

    Article  Google Scholar 

  5. A. M. Balagurov, E. Yu. Koroleva, A. A. Naberezhnov, V. P. Sakhnenko, B. N. Savenko, N. V. Ter-Oganessian, and S. B. Vakhrushev, Phase Trans. 79, 163 (2006).

    Article  Google Scholar 

  6. B. N. Rao, R. Datta, S. S. Chandrashekaran, D. K. Mishra, V. Sathe, A. Senyshyn, and R. Ranjan, Phys. Rev. B 88, 224103 (2013).

    Article  ADS  Google Scholar 

  7. C.-S. Tu, I. G. Siny, and V. H. Schmidt, Phys. Rev. B 49, 11550 (1994).

    Article  ADS  Google Scholar 

  8. F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli, and C. Galassi, Phys. Rev. B 81, 144124 (2010).

    Article  ADS  Google Scholar 

  9. J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, and G. E. Kugel, J. Phys.: Condens. Matter 16, 2719 (2004).

    ADS  Google Scholar 

  10. M. Geday, J. Kreisel, A. M. Glazer, and K. Roleder, J. Appl. Crystallogr. 33, 909 (2000).

    Article  Google Scholar 

  11. V. R. Mudinepalli, N. R. Reddy, W.-C. Lin, K. V. Siva Kumar, and B. S. Murty, Adv. Mater. Lett. 6, 27 (2015).

    Google Scholar 

  12. I. G. Siny, C.-S. Tu, and V. H. Schmidt, Phys. Rev. B 51, 5659 (1995).

    Article  ADS  Google Scholar 

  13. J. Suchanicz, J. Mater. Sci. 37, 489 (2002).

    Article  ADS  Google Scholar 

  14. A. I. Fedoseev, S. G. Lushnikov, S. N. Gvasaliya, P. P. Syrnikov, and S. Kojima, Phys. Solid State 51, 1399 (2009).

    Article  ADS  Google Scholar 

  15. I. G. Siny, E. Husson, J. M. Beny, S. G. Lushnikov, E. A. Rogacheva, and P. P. Syrnikov, Ferroelectrics 248, 57 (2000).

    Article  Google Scholar 

  16. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, J. Phys.: Condens. Matter 12, 3567 (2000).

    Google Scholar 

  17. G. Deng, S. Danilkin, H. Zhang, P. Imperia, X. Li, X. Zhao, and H. Luo, Phys. Rev. B 90, 134104 (2014).

    Article  ADS  Google Scholar 

  18. K. Sakata and Y. Masuda, Ferroelectrics 7, 347 (1974).

    Article  Google Scholar 

  19. V. Dorcet, G. Trolliard, and P. Boullay, J. Magn. Magn. Mater. 321, 1758 (2009).

    Article  ADS  Google Scholar 

  20. R. Beanland and P. A. Thomas, Scripta Mater. 65, 440 (2011).

    Article  Google Scholar 

  21. R. Beanland and P. A. Thomas, Phys. Rev. B 89, 174102 (2014).

    Article  ADS  Google Scholar 

  22. V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008).

    Article  Google Scholar 

  23. S. Gorfman and P. A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010).

    Article  Google Scholar 

  24. D. K. Jackson, J. Toulouse, and H. Luo, Phys. Rev. B 90, 054108 (2014).

    Article  ADS  Google Scholar 

  25. V. N. Novikov, N. V. Surovtsev, J. Wiedersich, S. Adichtchev, S. Kojima, and E. Reossler, Europhys. Lett. 57, 838 (2002).

    Article  ADS  Google Scholar 

  26. G. Li, W. H. Du, X. K. Chen, H. Z. Cammins, and N. J. Tao, Phys. Rev. A 45, 3867 (1992).

    Article  ADS  Google Scholar 

  27. A. Koreeda, H. Taniguchi, S. Saikan, and M. Itoh, Phys. Rev. Lett. 109, 197601 (2012).

    Article  ADS  Google Scholar 

  28. R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli, and G. M. Rotaru, Adv. Phys. 60, 229 (2011).

    Article  ADS  Google Scholar 

  29. R. Vacher and L. Boyer, Phys. Rev. B 6, 639 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lushnikov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseev, A.I., Popova, E.A., Syrnikov, P.P. et al. Multicomponent Quasi-Elastic Light Scattering in Na1/2Bi1/2TiO3 as Studied by Broadband Brillouin Scattering. Jetp Lett. 102, 789–795 (2015). https://doi.org/10.1134/S0021364015240042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015240042

Keywords

Navigation