Skip to main content
Log in

Effect of correlations and doping on the spin susceptibility of iron pnictides: the case of KFe2As2

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The temperature dependence of the paramagnetic susceptibility of the iron pnictide superconductor KFe2As2 and its connection with the spectral properties of that material is investigated by a combination of density functional theory (DFT) in the local density approximation and dynamical mean-field theory (DMFT). Unlike other iron pnictide parent compounds where the typical oxidation state of iron is 2, the formal valence of Fe in KFe2As2 is 2.5, corresponding to an effective doping with 0.5 hole per iron atom compared to, for example, BaFe2As2. This shifts the chemical potential and thereby reduces the distance between the peaks in the spectral functions of KFe2As2 and the Fermi energy as compared to BaFe2As2. The shift, which is clearly seen on the level of DFT as well as in DMFT, is further enhanced by the strong electronic correlations in KFe2As2. In BaFe2As2 the presence of these peaks results (Phys. Rev. B 86, 125124 (2012)) in a temperature increase in the susceptibility up to a maximum at ∼1000 K. While the temperature increase was observed experimentally the decrease at even higher temperatures is outside the range of experimental observability. We show that in KFe2As2 the situation is different. Namely, the reduction of the distance between the peaks and the Fermi level due to doping shifts the maximum in the susceptibility to much lower temperatures, such that the decrease in the susceptibility becomes visible in experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).

    Article  Google Scholar 

  2. A. Kreyssig, M. A. Green, Y. Lee, G. D. Samolyuk, P. Zajdel, J. W. Lynn, S. L. Bud’ko, M. S. Torikachvili, N. Ni, S. Nandi, J. B. Leão, S. J. Poulton, D. N. Argyriou, B. N. Harmon, R. J. McQueeney, P. C. Canfield, and A. I. Goldman, Phys. Rev. B 78, 184517 (2008).

    Article  ADS  Google Scholar 

  3. P. L. Alireza, Y. T. Chris Ko, J. Gillett, Ch. M. Petrone, J. M. Cole, G. G. Lonzarich, and S. E. Sebastian, J. Phys.: Condens. Matter 21, 012208 (2009).

    ADS  Google Scholar 

  4. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  5. H. Chen, Y. Ren, Y. Qiu, W. Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xie, X. F. Wang, Q. Huang, and X. H. Chen, Europhys. Lett. 85, 17006 (2009).

    Article  ADS  Google Scholar 

  6. K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y. Xue, and Ch.-W. Chu, Phys. Rev. Lett. 101, 107007 (2008).

    Article  ADS  Google Scholar 

  7. K. Kihou, T. Saito, Sh. Ishida, M. Nakajima, Y. Tomioka, H. Fukazawa, Y. Kohori, T. Ito, Sh.-i. Uchida, A. Iyo, Ch.-H. Lee, and H. Eisaki, J. Phys. Soc. Jpn. 79, 124713 (2010).

    Article  ADS  Google Scholar 

  8. S. L. Skornyakov, N. A. Skorikov, A. V. Lukoyanov, A. O. Shorikov, and V. I. Anisimov, Phys. Rev. B 81, 174522 (2010).

    Article  ADS  Google Scholar 

  9. M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009).

    Article  ADS  Google Scholar 

  10. S. L. Skornyakov, A. A. Katanin, and V. I. Anisimov, Phys. Rev. Lett. 106, 047007 (2011).

    Article  ADS  Google Scholar 

  11. S. L. Skornyakov, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 86, 125124 (2012).

    Article  ADS  Google Scholar 

  12. T. Terashima, M. Kimata, N. Kurita, H. Satsukawa, A. Harada, K. Hazama, M. Imai, A. Sato, K. Kihou, Ch.-H. Lee, H. Kito, H. Eisaki, A. Iyo, T. Saito, H. Fukazawa, Y. Kohori, H. Harima, and Sh. Uji, J. Phys. Soc. Jpn. 79, 053702 (2010).

    Article  ADS  Google Scholar 

  13. T. Yoshida, I. Nishia, A. Fujimoria, M. Yic, R. G. Moorec, D.-H. Luc, Z.-X. Shenc, K. Kihoub, P. M. Shirageb, H. Kitob, C. H. Leeb, A. Iyob, H. Eisakib, and H. Harima, J. Phys. Chem. Solids 72, 465 (2011).

    Article  ADS  Google Scholar 

  14. F. Hardy, A. E. Böhmer, D. Aoki, P. Burger, T. Wolf, P. Schweiss, R. Heid, P. Adelmann, Y. X. Yao, G. Kotliar, J. Schmalian, and C. Meingast, Phys. Rev. Lett. 111, 027002 (2013).

    Article  ADS  Google Scholar 

  15. X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, and X. H. Chen, Phys. Rev. Lett. 102, 117005 (2009).

    Article  ADS  Google Scholar 

  16. R. Klingeler, N. Leps, I. Hellmann, A. Popa, U. Stockert, C. Hess, V. Kataev, H.-J. Grafe, F. Hammerath, G. Lang, S. Wurmehl, G. Behr, L. Harnagea, S. Singh, and B. Büchner, Phys. Rev. B 81, 024506 (2010).

    Article  ADS  Google Scholar 

  17. M. M. Korshunov, I. Eremin, D. V. Efremov, D. L. Maslov, and A. V. Chubukov, Phys. Rev. Lett. 102, 236403 (2009).

    Article  ADS  Google Scholar 

  18. G. M. Zhang, Y. H. Su, Z. Y. Lu, Z. Y. Weng, D. H. Lee, and T. Xiang, Europhys. Lett. 86, 37006 (2009).

    Article  ADS  Google Scholar 

  19. B. Cheng, B. F. Hu, R. Y. Chen, G. Xu, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. B 86, 134503 (2012).

    Article  ADS  Google Scholar 

  20. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997); A. I. Lichtenstein et al., Phys. Rev. B 57, 6884 (1998); K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blumer, A. K. McMahan, R. T. Scalettar, Th. Pruschke, V. I. Anisimov, and D. Vollhardt, Phys. Status Solidi B 243, 2599 (2006); G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006); K. Held, Adv. Phys. 56, 829 (2007).

    ADS  Google Scholar 

  21. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  22. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005).

    Article  ADS  Google Scholar 

  23. http://elk.sourceforge.net/.

  24. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, 5467R (1995).

    Article  ADS  Google Scholar 

  25. V. I. Anisimov, Dm. M. Korotin, M. A. Korotin, A. V. Kozhevnikov, J. Kuneš, A. O. Shorikov, S. L. Skornyakov, and S. V. Streltsov, J. Phys.: Condens. Matter 21, 075602 (2009).

    ADS  Google Scholar 

  26. P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).

    Article  ADS  Google Scholar 

  27. H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  ADS  Google Scholar 

  28. K. Haule and G. Kotliar, New J. Phys. 11, 025021 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Skornyakov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skornyakov, S.L., Anisimov, V.I. & Vollhardt, D. Effect of correlations and doping on the spin susceptibility of iron pnictides: the case of KFe2As2 . Jetp Lett. 100, 120–125 (2014). https://doi.org/10.1134/S0021364014140112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014140112

Keywords

Navigation