Skip to main content
Log in

Thermopower of calcium at high pressures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Calcium at megabar pressures undergoes numerous structural transitions and has a complex phase diagram. At the same time, according to the recent theoretical investigations, an anomalous behavior of many physical properties, including a transition to the state of a narrow-gap semiconductor, can be expected even in the region of stability of the normal-pressure phase of calcium with the fcc structure at moderate pressures P ∼ 5–15 GPa. Data on the thermopower of calcium in the pressure range up to 9 GPa have been reported. The thermopower in this pressure range is positive, has a smooth maximum at 5–6 GPa, and decreases quite rapidly at higher pressures. The absolute values of the thermopower (5–12 μV/K) indicate that calcium in this pressure range is a metal. The difference between the thermopowers in the direct and inverse passages in the range of 5–7.5 GPa is fairly noticeable (∼10%). The possible reasons for such an anomalous behavior, as well as new calculations of the band structure of calcium, have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. P. Cracknell and K. C. Wong, The Fermi Surface (Clarendon, Oxford, 1973; Atomizdat, Moscow, 1978).

    Google Scholar 

  2. E. G. Maksimov, M. V. Magnitskaya, and V. E. Fortov, Phys. Usp. 48, 761 (2005).

    Article  ADS  Google Scholar 

  3. H. Olijnyk and W. B. Holzapfel, Phys. Lett. A 100, 191 (1984).

    Article  ADS  Google Scholar 

  4. T. Ishikawa, H. Nagara, N. Suzuki, et al., J. Phys.: Conf. Ser. 215, 012105 (2010).

    Article  ADS  Google Scholar 

  5. Y. Nakamoto, T. Yabuuchi, T. Matsuoka, et al., J. Phys. Soc. Jpn. (Suppl. A) 76, 25 (2007).

    Article  Google Scholar 

  6. Y. Nakamoto, M. Sakata, and K. Shimizu, Phys. Rev. B 81, 140106(R) (2010).

    Article  ADS  Google Scholar 

  7. M. Aftabuzzaman and A. K. M. A. Islam, J. Phys.: Condens. Matter 23, 105701 (2011).

    Article  ADS  Google Scholar 

  8. W. L. Mao, L. Wang, Y. Ding, et al., Proc. Natl. Acad. Sci. USA 107, 9965 (2010).

    Article  ADS  Google Scholar 

  9. T. Yabuuchi, T. Matsuoka, Y. Nakamoto, et al., J. Phys. Soc. Jpn. 75, 087703 (2006).

    Article  Google Scholar 

  10. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 81, 167 (1951).

    Google Scholar 

  11. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 425 (1942).

    Article  Google Scholar 

  12. R. A. Stager and H. G. Drickamer, Phys. Rev. 131, 2524 (1963).

    Article  ADS  Google Scholar 

  13. K. J. Dunn and F. P. Bundy, Phys. Rev. B 24, 1643 (1981).

    Article  ADS  Google Scholar 

  14. Q. F. Gu, G. Krauss, Yu. Grin, et al., Phys. Rev. B 79, 134121 (2009).

    Article  ADS  Google Scholar 

  15. S. L. Qiu and P. M. Marcus, J. Phys.: Condens. Matter 21, 435403 (2009).

    Article  ADS  Google Scholar 

  16. A. R. Oganov, Y. Ma, Y. Xu, et al., Proc. Natl. Acad. Sci. USA 107, 7646 (2010).

    Article  ADS  Google Scholar 

  17. T. E. Jones, M. E. Eberhart, and D. P. Clougherty, Phys. Rev. Lett. 105, 265702 (2010).

    Article  ADS  Google Scholar 

  18. I. Errea, B. Rousseau, A. Eiguren, et al., Phys. Rev. B 86, 085106 (2012).

    Article  ADS  Google Scholar 

  19. C. L. Swisher, Phys. Rev. 10, 601 (1917).

    Article  ADS  Google Scholar 

  20. A. I. Orlov, L. G. Khvostantsev, and E. G. Maksimov, JETP Lett. 84, 136 (2006).

    Article  ADS  Google Scholar 

  21. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

    Article  ADS  Google Scholar 

  22. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Ed. by K. Schwarz (Technische Univ. Wien, Vienna, 2011). http://www.wien2k.at/

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Brazhkin.

Additional information

Original Russian Text © V.V. Brazhkin, O.B. Tsiok, M.V. Magnitskaya, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 8, pp. 561–565.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazhkin, V.V., Tsiok, O.B. & Magnitskaya, M.V. Thermopower of calcium at high pressures. Jetp Lett. 97, 490–494 (2013). https://doi.org/10.1134/S0021364013080067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013080067

Keywords

Navigation