Skip to main content
Log in

Quasi-one-dimensional fullerene-nanotube composites: Structure, formation energetics, and electronic properties

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Carbon nanotubes coated with close-packed C60 (or C70) fullerenes, which are “attached” to the nanotubes by van der Waals forces, are considered and classified as a new class of nanocomposites. Semiempirical and molecular-dynamics calculations reveal the most energetically stable systems and show that a topological (Stone-Wales) defect on a nanotube can promote a more favorable “attachment” of fullerene to the nanotube. It has been shown that the molecular interaction of the fullerene coating with the nanotube leads to a significant change in its electronic spectrum, namely, to the formation of minibands including a large number of branches associated with the lift of the degeneracy of levels of C60 and to the consolidation of branches of the carbon nanotube into the Brillouin zone smaller than that in the carbon nanotube. This fact should strongly change the interaction of light with such a nanocomposite as compared to carbon nanotubes and fullerenes, which provides prospect of its application in photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carbon Nanotubes: Properties and Application, Ed. by M. J. O’Connell (CRC Press, FL, USA, 2006).

    Google Scholar 

  2. S. Saito and A. Oshiyama, Phys. Rev. B 49, 17413 (1994).

    Article  ADS  Google Scholar 

  3. M. Ishikawa, S. Kamiya, S. Yoshimoto, et al., J. Nanomater. 2010, 891514 (2010).

    Article  Google Scholar 

  4. D. Kondo, S. Sato, and Y. Awano, Appl. Phys. Express 1, 074003–3 (2008).

    Article  ADS  Google Scholar 

  5. L. A. Chernozatonskii, E. F. Sheka, and A. A. Artyukh, JETP Lett. 89, 352 (2009).

    Article  ADS  Google Scholar 

  6. A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, et al., Nature Nanotechnol. 2, 156 (2007).

    Article  ADS  Google Scholar 

  7. X. Wu and X. C. Zeng, ACS Nano 2, 7 (2008).

    Article  Google Scholar 

  8. C. Li, Y. Chen, Y. Wang, et al., J. Mater. Chem. 17, 2406 (2007).

    Article  Google Scholar 

  9. N. S. Sariciftci, D. Braun, C. Zhang, et al., Appl. Phys. Lett. 62, 6 (1993).

    Article  Google Scholar 

  10. Langmuir-Blodgett Film, Wikipedia, the free Encyclopedia. http://en.wikipedia.org/wiki/Langmuir%E2%80%93Blodgett-film.

  11. M. Zhang, A. Jagota, M. S. Strano, et al., Science 302, 1545 (2003).

    Article  ADS  Google Scholar 

  12. R. O. Erickson, Science 181, 705 (1973).

    Article  ADS  Google Scholar 

  13. L. A. Chernozatonskii, JETP Lett. 80, 628 (2004).

    Article  ADS  Google Scholar 

  14. J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).

    Article  MATH  Google Scholar 

  15. D. W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Article  ADS  Google Scholar 

  16. J. E. Lennard-Jones, Proc. R. Soc. A 106, 463 (1924).

    Article  ADS  Google Scholar 

  17. Fullerene Polymers and Fullerene Polymer Composites, Ed. by P. C. Eklund and A. M. Rao (Springer, Berlin, 2000).

    Google Scholar 

  18. P. A. Heiney, G. B. M. Vaughan, J. Fischer, et al., Phys. Rev. B 45, 4544 (1992).

    Article  ADS  Google Scholar 

  19. R. D. Johnson, C. S. Yannoni, H. C. Dorn, et al., Science 255, 1235 (1992)

    Article  ADS  Google Scholar 

  20. J. Cumings and A. Zettl, Science 289, 602 (2000).

    Article  ADS  Google Scholar 

  21. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

    Article  Google Scholar 

  22. Y. Miyamoto, A. Rubio, S. Berber, et al., Phys. Rev. B 69, 121413R (2004)

    Article  ADS  Google Scholar 

  23. L. Li, S. Reich, and J. Robertson, Phys. Rev. B 72, 184109 (2005).

    Article  ADS  Google Scholar 

  24. J. Kotakoski, J. C. Meyer, S. Kurasch, et al., Phys. Rev. B 83, 245420 (2011).

    Article  ADS  Google Scholar 

  25. P. Hohenberg and W. Kohn, Phys. Rev. A 136, 864 (1964).

    MathSciNet  ADS  Google Scholar 

  26. Y. J. M. Soler, E. Artacho, J. D. Gale, et al., J. Phys.: Condens. Matter 14, 2745 (2002).

    Article  ADS  Google Scholar 

  27. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5075 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Chernozatonskii.

Additional information

Original Russian Text © L.A. Chernozatonskii, A.A. Artyukh, V.A. Demin, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 2, pp. 119–126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernozatonskii, L.A., Artyukh, A.A. & Demin, V.A. Quasi-one-dimensional fullerene-nanotube composites: Structure, formation energetics, and electronic properties. Jetp Lett. 97, 113–119 (2013). https://doi.org/10.1134/S0021364013020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013020045

Keywords

Navigation