Skip to main content
Log in

High-temperature ferromagnetism in Si1 − x Mn x (x ≈ 0.5) nonstoichiometric alloys

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It has been found that the Curie temperature (T C ≈ 300 K) in nonstoichiometric Si1 − x Mn x alloys slightly enriched in Mn (x ≈ 0.52–0.55) in comparison to the stoichiometric manganese monosilicide MnSi becomes about an order of magnitude higher than that in MnSi (T C ∼ 30 K). Deviations from stoichiometry lead to a drastic decrease in the density of charge carries (holes), whereas their mobility at about 100 K becomes an order of magnitude higher than the value characteristic of MnSi. The high-temperature ferromagnetism is ascribed to the formation of defects with the localized magnetic moments and by their indirect exchange interaction mediated by the paramagnetic fluctuations of the hole spin density. The existence of defects with the localized magnetic moments in Si1 − x Mn x alloys with x ≈ 0.52–0.55 is supported by the results of numerical calculations performed within the framework of the local-density-functional approximation. The increase in the hole mobility in the nonstoichiometric material is attributed to the decay of the Kondo (or spin-polaron) resonances presumably existing in MnSi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Zhou and H. Schmidt, Materials 3, 5054 (2010).

    Article  ADS  Google Scholar 

  2. A. F. Orlov, A. B. Granovsky, L. A. Balagurov, et al., J. Exp. Theor. Phys. 109, 602 (2009).

    Article  ADS  Google Scholar 

  3. V. N. Men’shov, V. V. Tugushev, and S. Caprara, Phys. Rev. B 83, 035201 (2011); V. N. Men’shov and V. V. Tugushev, J. Exp. Theor. Phys. 113, 121 (2011).

    Article  ADS  Google Scholar 

  4. B. A. Aronzon, V. V. Rylkov, S. N. Nikolaev, et al., Phys. Rev. B 84, 075209 (2011); S. N. Nikolaev, B. A. Aronzon, V. V. Rylkov, et al., JETP Lett. 89, 603 (2009).

    Article  ADS  Google Scholar 

  5. S. Caprara, E. Kulatov, and V. V. Tugushev, Eur. Phys. J. B 85, 149 (2012).

    Article  ADS  Google Scholar 

  6. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

    Google Scholar 

  7. S. M. Stishov and A. E. Petrova, Phys. Usp. 54, 1117 (2011).

    Article  ADS  Google Scholar 

  8. E. V. Khaidukov, O. A. Novodvorsky, V. V. Rocheva, et al., Tech. Phys. Lett. 37, 69 (2011); A. A. Lotin, O. A. Novodvorsky, E. V. Khaidukov, et al., Semiconductors 44, 246 (2010); O. A. Novodvorsky, A. A. Lotin, and E. V. Khaidukov, Patent RF on Useful Model No. 89906, Byull. No. 35 (2009).

    Article  ADS  Google Scholar 

  9. N. Ohtsu, M. Oku, A. Nomura, et al., Appl. Surf. Sci. 254, 3288 (2008).

    Article  ADS  Google Scholar 

  10. C. Sürgers, M. Gajdzik, G. Fischer, et al., Phys. Rev. B 68, 174423 (2003); B. Gopalakrishnan, C. Surgers, R. Montbrun, et al., Phys. Rev. B 77, 104414 (2008).

    Article  ADS  Google Scholar 

  11. M. Lee, Y. Onose, Y. Tokura, and N. P. Ong, Phys. Rev. B 75, 172403 (2007); M. Lee, W. Kang, Y. Onose, et al., Phys. Rev. Lett. 102, 186601 (2009).

    Article  ADS  Google Scholar 

  12. A. Neubauer, C. Pfleiderer, R. Ritz, et al., Physica B 404, 3163 (2009).

    Article  ADS  Google Scholar 

  13. N. Nagaosa, J. Sinova, S. Onoda, et al., Rev. Mod. Phys. 82, 1539 (2010).

    Article  ADS  Google Scholar 

  14. T. Dietl, in Modern Aspects of Spin Physics, Lecture Notes in Physics, Ed. by W. Potz, J. Fabian, and U. Hohenester, Vol. 712 (Springer, Berlin, Heidelberg, 2007), p. 1.

    Chapter  Google Scholar 

  15. V. V. Rylkov, B. A. Aronzon, Yu. A. Danilov, et al., J. Exp. Theor. Phys. 100, 742 (2005).

    Article  ADS  Google Scholar 

  16. S. V. Demishev, A. V. Semeno, A. V. Bogach, et al., JETP Lett. 93, 213 (2011); S. V. Demishev, V. V. Glushkov, I. I. Lobanova, et al., Phys. Rev. B 85, 045131 (2012).

    Article  ADS  Google Scholar 

  17. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Univ., Wien, Austria, 2001).

    Google Scholar 

  18. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  19. V. G. Storchak, J. H. Brewer, R. L. Lichti, et al., Phys. Rev. B 83, 140404(R) (2011).

    ADS  Google Scholar 

  20. F. P. Mena, D. van der Marel, A. Damascelli, et al., Phys. Rev. B 67, 241101(R) (2003).

    Article  ADS  Google Scholar 

  21. A. B. Gokhale and R. Abbaschian, Bull. Alloy Phase Diagr. 11, 468 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rylkov.

Additional information

Original Russian Text © V.V. Rylkov, S.N. Nikolaev, K.Yu. Chernoglazov, B.A. Aronzon, K.I. Maslakov, V.V. Tugushev, E.T. Kulatov, I.A. Likhachev, E.M. Pashaev, A.S. Semisalova, N.S. Perov, A.B. Granovskii, E.A. Gan’shina, O.A. Novodvorskii, O.D. Khramova, E.V. Khaidukov, V.Ya. Panchenko, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 96, No. 4, pp. 272–280.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rylkov, V.V., Nikolaev, S.N., Chernoglazov, K.Y. et al. High-temperature ferromagnetism in Si1 − x Mn x (x ≈ 0.5) nonstoichiometric alloys. Jetp Lett. 96, 255–262 (2012). https://doi.org/10.1134/S0021364012160114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012160114

Keywords

Navigation