Skip to main content
Log in

Spontaneous breaking of four-fold rotational symmetry in two-dimensional electronic systems explained as a continuous topological transition

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstrtact

The Fermi liquid approach is applied to the problem of spontaneous violation of the C 4 symmetry in strongly correlated two-dimensional electronic systems on a square lattice. The symmetry breaking is traced to the existence of a topological phase transition. This continuous transition is triggered when the Fermi line, driven by the quasiparticle interactions, reaches the van Hove saddle points, where the group velocity vanishes and the density of states becomes singular. An unconventional Fermi liquid emerges beyond the implicated quantum critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kaminski, S. Rosenkranz, H. W. Fretwell, et al., Nature 416, 610 (2002).

    Article  ADS  Google Scholar 

  2. Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).

    Article  ADS  Google Scholar 

  3. J. Xia, E. Schemm, G. Deutscher, et al., Phys. Rev. Lett. 100, 127002 (2008).

    Article  ADS  Google Scholar 

  4. V. Hinkov, D. Haug, B. Fauque, et al., Science 319, 597 (2008).

    Article  Google Scholar 

  5. H. A. Mook, Y. Sidis, B. Fauque, et al., Phys. Rev. B 78, 020506(R) (2008).

    Article  ADS  Google Scholar 

  6. K. Daou, J. Chang, D. LeBoeuf, et al., arXiv:0909.4430.

  7. S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).

    Article  ADS  Google Scholar 

  8. H. Yamase and H. Kohno, J. Phys. Soc. Jpn. 69, 2151 (2000).

    Article  ADS  Google Scholar 

  9. C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).

    Article  ADS  Google Scholar 

  10. I. Ya. Pomeranchuk, Sov. Phys. JETP 8, 361 (1959).

    Google Scholar 

  11. V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64, 195109 (2001).

    Article  ADS  Google Scholar 

  12. A. P. Kampf and A. A. Katanin, Phys. Rev. B 67, 125104 (2003).

    Article  ADS  Google Scholar 

  13. A. Neumayr and W. Metzner, Phys. Rev. B 67, 035112 (2003).

    Article  ADS  Google Scholar 

  14. H. Y. Kee, E. H. Kim, and C. H. Chung, Phys. Rev. B 68, 245109 (2003).

    Article  ADS  Google Scholar 

  15. H. Yamase and W. Metzner, Phys. Rev. B 75, 155117 (2007).

    Article  ADS  Google Scholar 

  16. C. A. Lamas, D. C. Cabra, and N. Grandi, Phys. Rev. B 78, 115104 (2008).

    Article  ADS  Google Scholar 

  17. E. Fradkin, S. A. Kivelson, M. J. Lawler, et al., arXiv:0910.4166.

  18. S. T. Belyaev, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 31(11), 1 (1959).

    MathSciNet  Google Scholar 

  19. I. Khavkine, C. Chang, V. Oganesyan, and H. Kee, Phys. Rev. B 70, 155110 (2004).

    Article  ADS  Google Scholar 

  20. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967).

    Google Scholar 

  21. I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  22. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  23. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  24. P. Noziéres, J. Phys. I France 2, 443 (1992).

    Article  Google Scholar 

  25. M. V. Zverev and M. Baldo, JETP 87, 1129 (1998); J. Phys.: Condens. Matter 11, 2059 (1999).

    Article  ADS  Google Scholar 

  26. S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, JETP Lett. 68, 942 (1998).

    Article  ADS  Google Scholar 

  27. M. V. Zverev, V. A. Khodel, and J. W. Clark, JETP Lett. 74, 46 (2001).

    Article  ADS  Google Scholar 

  28. J. Quintanilla and A. J. Schofield, Phys. Rev. B 74, 115126 (2006).

    Article  ADS  Google Scholar 

  29. V. A. Khodel, J. W. Clark, H. Li, and M. Zverev, Phys. Rev. Lett. 98, 216404 (2007).

    Article  ADS  Google Scholar 

  30. G. E. Volovik, Lecture Notes in Physics 718, 31 (2007) [cond-mat/0601372].

    Article  MathSciNet  Google Scholar 

  31. V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Usp. Fiz. 177, 585 (2007) [Phys. Usp. 50, 563 (2007)].

    Article  Google Scholar 

  32. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008), and references therein.

    Article  ADS  Google Scholar 

  33. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 87, 693 (2009); arXiv:0904.1509.

    Google Scholar 

  34. L. D. Landau, Sov. Phys. JETP 3, 920 (1957); Sov. Phys. JETP 5, 101 (1957); Sov. Phys. JETP 8, 70 (1959).

    MATH  Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 3rd ed. (Nauka, Moscow, 1976; Addison-Wesley, Reading, MA, 1970).

    Google Scholar 

  36. D. Pines, Physica C 282–287, 273 (1997); A. V. Chubukov, Europhys. Lett. 44, 655 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zverev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zverev, M.V., Clark, J.W., Nussinov, Z. et al. Spontaneous breaking of four-fold rotational symmetry in two-dimensional electronic systems explained as a continuous topological transition. Jetp Lett. 91, 529–534 (2010). https://doi.org/10.1134/S0021364010100085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010100085

Keywords

Navigation