Skip to main content
Log in

Aging of titania hydrosols prepared via ultrasonic processing

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of aging conditions on the properties of titania hydrosols produced via ultrasonic processing and containing aggregates of 5-nm-diameter amorphous particles. The results demonstrate that, at room-temperature, 0.44 M to 0.11 M hydrosols are stable for 3 to 22 days. During aging for 40 to 45 days, the properties of 0.01 M to 0.0025 M hydrosols remain unchanged. Aging for a longer time causes the amorphous particles to crystallize in the anatase structure. Raising the temperature to 75°C reduces the induction time to 3–4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. and Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 2007, vol. 107, no. 7, pp. 2891–2959.

    Article  CAS  Google Scholar 

  2. Ismagilov, Z.R., Tsikoza, L.T., Shikina, N.V., Zarytova, V.F., Zinov’ev, V.V., and Zagrebel’nyi, S.N., Synthesis and stabilization of nanoparticulate titanium dioxide, Usp. Khim., 2009, vol. 78, no. 9, pp. 942–955.

    Article  Google Scholar 

  3. Pelaez, M., Nolan, N.T., Pillai, T.S., Seery, M.K., and Falaras, P., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 2012, vol. 125, pp. 331–349.

    Article  CAS  Google Scholar 

  4. Macheswari, D. and Venkatachalam, P., Sol–gel synthesis and characterization of TiO2 nano films in the building of Dssc, J. Electron. Commun. Eng., 2013, vol. 4, no. 4, pp. 29–33.

    Article  Google Scholar 

  5. Xu, Q. and Anderson, M.A., Synthesis of porosity controlled ceramic membranes, J. Mater. Res., 1991, vol. 6, no. 5, pp. 1073–1081.

    Article  CAS  Google Scholar 

  6. Kozlowska, K., Lukowiak, A., Szczurek, A., Durek, K., and Naruszewski, K., Sol–gel coatings for electrical gas sensors, Opt. Appl., 2005, vol. 35, no. 4, pp. 29–34.

    Google Scholar 

  7. Ranganayaki, T., Venkatachalam, M., Vasuki, T., and Shankar, S.L., Preparation and characterization of nanocrystalline TiO2 thin films prepared by sol–gel spin-coating method, J. Innovative Res. Sci., 2014, vol. 3, no. 10, pp. 16707–16713.

    Google Scholar 

  8. Shen, G.X., Chen, Y.C., and Lin, C.J., Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method, Thin Solid Films, 2005, vol. 489, nos. 1–2, pp. 130–136.

    Article  CAS  Google Scholar 

  9. Jin, Y.S. and Choi, H.W., The effect of different TiO2 passivating layers on the photovoltaic performance of dye-sensitized solar cells, J. Ceram. Proc. Res., 2012, vol. 13, no. 2, pp. 178–183.

    Google Scholar 

  10. Anderson, M.A., Gieselmann, M.J., and Xu, Q., Titania and alumina ceramic membranes, J. Membr. Sci., 1988, vol. 39, no. 3, pp. 243–258.

    Article  CAS  Google Scholar 

  11. Alphonse, P., Vartghese, A., and Tendero, C., Stable hydrosols for TiO2 coatings, J. Sol–Gel Sci. Technol., 2010, vol. 56, no. 3, pp. 250–263.

    Article  CAS  Google Scholar 

  12. Wang, J., Yu, J., Liu, Z., He, Z., and Cai, R., A simple new way to prepare anatase TiO2 hydrosol with high photocatalytic activity, Semicond. Sci. Technol., 2005, vol. 20, no. 8, pp. 136–139.

    Article  Google Scholar 

  13. Lee, D.S. and Liu, T.K., Preparation of TiO2 sol using TiCl4 as a precursor, J. Sol–Gel Sci. Technol., 2002, vol. 25, no. 2, pp. 121–136.

    Article  CAS  Google Scholar 

  14. Zou, J., Gao, J., and Xie, F., An amorphous TiO2 sol sensitized with H2O with enhancement of catalytic activity, J. Alloys Compd., 2010, vol. 497, nos. 1–2, pp. 420–427.

    Article  CAS  Google Scholar 

  15. Seok, S.I.I., Vithal, M., and Chang, I.Ah., Colloidal TiO2 prepared from peroxotitanium complex solutions: phase evolution from different precursors, J. Colloid Interface Sci., 2010, vol. 346, no. 1, pp. 66–73.

    Article  CAS  Google Scholar 

  16. Shri, P.S. and Madhavan, J., Synthesis of TiO2 nanoparticles by ultrasonic assisted sol–gel method, Int. J. Chem. Technol. Res., 2013, vol. 5, no. 6, pp. 2970–2974.

    Google Scholar 

  17. Neppolean, B., Wang, Q., Jung, H., and Choi, H., Ultrasonic-assisted preparation of TiO2 nanoparticles. Characterization, properties and 4-chlorophenol removal application, Ultrason. Sonochem., 2008, vol. 15, no. 4, pp. 649–658.

    Article  Google Scholar 

  18. Soderzhinova, M.M., Tarasova, D.V., and Chibirova, F.Kh., Ultrasound-assisted synthesis of titania hydrosols, Russ. J. Inorg. Chem., 2014, vol. 59, no. 8, pp. 801–806.

    Article  CAS  Google Scholar 

  19. Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Yu.D., Sonochemical synthesis of inorganic materials, Usp. Khim., 2007, vol. 76, no. 2, pp. 147–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Soderzhinova.

Additional information

Original Russian Text © M.M. Soderzhinova, D.V. Tarasova, F.Kh. Chibirova, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 5, pp. 517–522.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soderzhinova, M.M., Tarasova, D.V. & Chibirova, F.K. Aging of titania hydrosols prepared via ultrasonic processing. Inorg Mater 52, 470–475 (2016). https://doi.org/10.1134/S0020168516050162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516050162

Keywords

Navigation