Skip to main content
Log in

Conversion of short-wavelength electromagnetic radiation in SiO2 opal photonic crystals

  • Published:
Inorganic Materials Aims and scope

Abstract

Reflection spectra of the (111) growth surface of opal photonic crystals differing in silica sphere diameter have been measured under illumination with narrowband ultraviolet and violet light from a laser and light-emitting diodes and with broadband light from a halogen lamp. We have found narrow strong bands differing in spectral position from the light from the short-wavelength excitation sources. The spectral position of these bands corresponds to that of photonic band gaps and is independent of excitation wavelength. The silica sphere diameter has no effect on the shape of the reflection band, and its position always correlates with that of the band gap of the opal. The present results demonstrate that exposure of a photonic crystal to short-wavelength radiation leads to conversion of the radiation to the spectral range of the band gap. The microscopic mechanism of the conversion process may involve three-photon parametric processes and amplification of the broadband photoluminescence due to structural defects in the silica matrix. Our results open up the possibility of creating new types of optically pumped solid gain media based on opal photonic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorelik, V.S., Optics of globular photonic crystals, Laser Phys., 2008, vol. 18, no. 12, pp. 1479–1500.

    Article  CAS  Google Scholar 

  2. Gorelik, V.S., Optical properties of opal photonic crystals, Kvantovaya Elektron. (Moscow), 2007, vol. 37, no. 5, pp. 409–432.

    Article  CAS  Google Scholar 

  3. Gorelik, V.S., Bound and dark photonic states in globular photonic crystals, Acta Phys. Hung. B: Quantum Electron., 2006, vol. 26, nos. 1–2, pp. 38–46.

    Google Scholar 

  4. Asakawa, K., Sugimoto, Y., Watanabe, Y., Ozaki, N., Mizutani, A., Takata, Y., Kitagawa, Y., Ishikawa, H., Ikeda, N., Awazu, K., Wang, X., Watanabe, A., Nakamura, S., Ohkouchi, S., Inoue, K., Kristensen, M., Sigmund, O., Borel, P.I., and Baets, R., Photonic crystal and quantum dot technologies for all-optical switch and logic device, New J. Phys., 2006, vol. 8, no. 208, pp. 1–26.

    Google Scholar 

  5. Bykov, V.P., Spontaneous emission in a periodic structure, Zh. Eksp. Teor. Fiz., 1972, vol. 62, pp. 505–513.

    CAS  Google Scholar 

  6. Wang, S. and Sheem, S.K., US Patent, 1976.

  7. Yablonovitch, E. and Gmitter, T.J., Photonic band structure: the face-centered-cubic case, J. Opt. Soc. Am. A, 1990, vol. 7, no. 9, pp. 1792–1800.

    Article  CAS  Google Scholar 

  8. Floquet, G., Sur les equations différenrielles lineaires a coefficients periodiques, Ann. Sci. Ecole Normale Super., 1883, vol. 12, pp. 48–88.

    Google Scholar 

  9. Fogel, I.S., Bendickson, J.M., Tocci, M.D., Bloemer, M.J., Scalora, M., Bowden, C.M., and Dowling, J.P., Spontaneous emission and nonlinear effects in photonic band-gap materials, Pure Appl. Opt., 1998, vol. 7, pp. 393–407.

    Article  CAS  Google Scholar 

  10. Gorelik, V.S. and Litvinova, A.O., Refractive sensor of organic and inorganic compounds based on opal photonic crystals, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. Estestv. Nauki, 2012, no. 5, pp. 195–210.

    Google Scholar 

  11. Yeh, P., Yariv, A., and Hong, C.-S., Electromagnetic propagation in periodic stratified media, J. Opt. Soc. Am., 1977, vol. 67, no. 4, pp. 423–438.

    Article  Google Scholar 

  12. Maddox, J., Photonic band-gaps bite the dust, Nature, 1990, vol. 348, no. 6301, p. 481.

    Article  Google Scholar 

  13. Yablonovitch, E., Gmitter, T.J., Meade, R.D., Rappe, A.M., Brommer, K.D., and Joannopoulos, J.D., Donor and acceptor modes in photonic band structure, Phys. Rev. Lett., 1991, vol. 67, no. 24, pp. 3380–3383.

    Article  CAS  Google Scholar 

  14. Photonic Band Gaps and Localization, Soukoulis, C.M., Ed., Berlin: Springer, 1993.

    Google Scholar 

  15. Gorelik, V.S., Voinov, Yu.P., Zvorykin, V.D., Lebo, A.I., Lebo, I.G., Levchenko, A.O., and Ustinovsky, N.N., Laser implantation of sodium nitrite ferroelectric into pores of synthetic opal, J. Russ. Laser Res., 2010, vol. 31, no. 1, pp. 80–91.

    Article  Google Scholar 

  16. Vekris, E., Kitaev, V., Perovic, D.D., Aitchison, J.S., and Ozin, A., Visualization of stacking faults and their formation in colloidal photonic crystal films, Adv. Mater., 2008, vol. 20, no. 6, pp. 1110–1116.

    Article  CAS  Google Scholar 

  17. Gorelik, V.S., Gryaznov, V.V., and Yurasov, N.I., Local surface spectroscopy of magnetic photonic crystals, Inorg. Mater., 2010, vol. 46, no. 8, pp. 866–869.

    Article  CAS  Google Scholar 

  18. Jonas, M., Huang, H., Kamm, R.D., and So, P.T.C., Fast fluorescence laser tracking microrheometry, instrument development, Biophys. J., 2008, vol. 94, pp. 1459–1469.

    Article  CAS  Google Scholar 

  19. Energy savings estimates of light emitting diodes in niche lighting applications, US Department of Energy, 2011.

  20. Tikhand, I. and Schmidt-Dannert, C., Towards engineered light energy conversion in non photosynthetic microorganisms, Univ. of Minnesota St. Paul, 2013.

    Google Scholar 

  21. Sakoda, K., Optical properties of photonic crystals, in Optical Sciences, Berlin: Springer, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Original Russian Text © V.S. Gorelik, L.S. Lepnev, A.O. Litvinova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 10, pp. 1086–1090.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelik, V.S., Lepnev, L.S. & Litvinova, A.O. Conversion of short-wavelength electromagnetic radiation in SiO2 opal photonic crystals. Inorg Mater 50, 1003–1006 (2014). https://doi.org/10.1134/S0020168514100082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514100082

Keywords

Navigation