Skip to main content
Log in

General aspects of the growth of In-In2O3 films

  • Published:
Inorganic Materials Aims and scope

Abstract

Transformations in indium nanolayers have been studied by optical spectroscopy, microscopy, and gravimetry in relation to the thickness of the layers (2–147 nm) and heat treatment temperature (473–873 K) and time (0–120 min). The kinetic curves for the degree of conversion are adequately described by a linear, inverse logarithmic, parabolic, or logarithmic law, depending on the thickness of the indium film and heat treatment temperature. We have measured the contact potential difference across the In and In2O3 films and the photovoltage in the In-In2O3 system. The results have been used to derive the energy band diagram of the In-In2O3 system. A model has been proposed for the thermal transformation of indium films, which involves oxygen adsorption steps, charge carrier redistribution in the In-In2O3 interfacial field (positive on the In2O3 side), and In2O3 formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strikha, V.I. and Buzaneva, E.V., Fizicheskie osnovy nadezhnosti kontaktov metall-poluprovodnik v integral’noi elektronike (Physical Principles behind the Reliability of Metal-Semiconductor Contacts in Integrated Electronics), Moscow: Radio i Svyaz’, 1987.

    Google Scholar 

  2. Kratkaya khimicheskaya entsiklopediya (Concise Chemical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1963 vol. 2.

  3. Songina, O.A., Redkie metally (Rare Metals), Moscow: Metallurgiya, 1964.

    Google Scholar 

  4. Gevorkyan, V.A., Aroutiounian, V.M., Gambaryan, K.M., et al., InAsSbP/InAs Heterostructures for Thermophotovoltaic Converters: Growth Technology and Properties, Tech. Phys. Lett., 2008 vol. 34, no. 1, pp. 69–71.

    Article  CAS  Google Scholar 

  5. Lokhande, C.D., Barkschat, A., and Tributsch, H., Contact Angle Measurements: An Empirical Diagnostic Method for Evaluation of Thin Film Solar Cell Absorbers (CuInS2), Sol. Energy Mater. Sol. Cells, 2003 vol. 79, no. 3, pp. 293–304.

    Article  CAS  Google Scholar 

  6. Fedorov, P.I. and Akchurin, R.Kh., Indii (Indium), Moscow, 2000.

  7. Gainutdinov, I.S., Nesmelov, E.A., Aliakberov, R.D., et al., Effect of Surface Conduction on the Optical Properties of Tin-Doped Indium Oxide Films, Opt. Zh., 2005 vol. 72, no. 10, pp. 63–69.

    Google Scholar 

  8. Logacheva, V.A., Grigoryan, G.S., Solodukha, A.M., et al., Phase Composition and Electrical Conductivity of Indium Tungstate Films Produced from Bilayer Structures, Inorg. Mater., 2008 vol. 44, no. 3, pp. 311–315.

    Article  CAS  Google Scholar 

  9. Indutnyi, I.Z., Kostyshin, M.T., Kasyarum, O.P., et al., Fotostimulirovannye vzaimodeistviya v strukturakh metall-poluprovodnik (Photostimulated Interactions in Metal-Semiconductor Structures), Kiev: Naukova Dumka, 1992.

    Google Scholar 

  10. Borisova, N.V. and Surovoi, E.P., General Aspects of the Formation of Aluminum-Alumina Nanophase Systems during Heat Treatment of Aluminum Films, Korroz.: Mater., Zashch., 2007, no. 6, pp. 13–18.

  11. Surovoi, E.P., Bin, S.V., and Borisova, N.V., Corrosion of Lead Nanofilms, Korroz.: Mater., Zashch., 2008, no. 11, pp. 4–10.

  12. Surovoy, E.P. and Borisova, N.V., Regularities of Photostimulated Conversions in Nanometer Aluminum Layers, J. Phys. Chem., 2009 vol. 83, no. 13, pp. 2302–2307.

    Google Scholar 

  13. Surovoi, E.P. and Borisova, N.V., Thermal Transformations in Nanosized Copper Layers, Russ. J. Phys. Chem. A, 2010 vol. 84, no. 2, pp. 255–260.

    Article  CAS  Google Scholar 

  14. Surovoi, E.P. and Bugerko, L.N., Thermally Stimulated Gas Release from Silver Azide-Metal Systems, Khim. Fiz., 2002 vol. 21, no. 7, pp. 74–78.

    CAS  Google Scholar 

  15. Surovoi, E.P., Titov, I.V., and Bugerko, L.N., Surface Condition of Lead, Silver, and Thallium Azides during Photolysis Studied by Contact Potential Difference Measurements, Materialovedenie, 2005, no. 7, pp. 15–20.

  16. Bube, R.H., Photoconductivity of Solids, New York: Wiley, 1960.

    Google Scholar 

  17. Tomashov, N.D., Teoriya korrozii i zashchity metallov (Theory of Corrosion and Metal Protection), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  18. Hauffe, K., Reaktionen in und an festen Stoffen, Berlin: Springer, 1955.

    Google Scholar 

  19. Kubaschewski, O. and Hopkins, B.E., Oxidation of Metals and Alloys, London: Butterworths, 1962, 2nd ed.

    Google Scholar 

  20. Barret, P., Cinétique hétérogène, Paris: Gauthier Villars, 1973.

    Google Scholar 

  21. Vol’kenshtein, F.F., Fizikokhimiya poverkhnosti poluprovodnikov (Physical Chemistry of Semiconductor Surfaces), Moscow: Nauka, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.P. Surovoi, G.O. Eremeeva, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 7, pp. 819–824.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surovoi, E.P., Eremeeva, G.O. General aspects of the growth of In-In2O3 films. Inorg Mater 48, 716–720 (2012). https://doi.org/10.1134/S0020168512070175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512070175

Keywords

Navigation