Skip to main content
Log in

The stability of swirling flows with a heat source

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The absolute instability of a Rankine vortex with an axial flow and paraxial heat source is investigated. The dispersion relation for vortex modes is derived analytically. The dependence of dispersion properties of the media on control parameters such as swirl parameter S, velocity a, and heat source power (density parameter Q) is studied. The frequency of helical waves increases and the increment decreases with increasing heat source power, accompanied by a decrease in the width of the neutral stability region. Numerical analysis also suggests that one of the dispersion curve branches could include an instability region of a parametric nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta, A.K., Lilley, D.G., Syred, N., Swirl Flows, Tunbridge Wells: Abacus, 1984.

    Google Scholar 

  2. Alekseenko, S.V., Kuibin, P.A., and Okulov, V.L., Vvedenie v teoriyu kontsentrirovannykh vikhrei (Introduction to the Theory of Concentrated Vortices), Novosibirsk: Inst. Teplofiz., Sib. Otd. Ross. Akad. Nauk, 2003.

    MATH  Google Scholar 

  3. Syred, N., Prog. Energy Combust. Sci., 2006, vol. 32, p. 93.

    Article  Google Scholar 

  4. Hassa, C., Voigt, P., Lehmann, B., Schodl, R., and Carl, M., AIAA Pap., 2002, 2002–3709.

    Google Scholar 

  5. Jasinski, M., Dors, M., Nowakowska, H., and Mizeraczyk, J., Chem. Listy, 2008, vol. 102, p. 1332.

    Google Scholar 

  6. Bityurin, V.A., Klimov, A.I., Korshunov, O.V., and Chinnov, V.F., High Temp., 2015, vol. 53, no. 1, p. 21.

    Article  Google Scholar 

  7. Litvinov, I.V., Shtork, S.I., Kuibin, P.A., Alekseenko, S.V., and Hanjalic, K., Int. J. Heat Fluid Flow, 2013, vol. 42, p. 251.

    Article  Google Scholar 

  8. Fernandes, E.C., Heitor, M.V., and Shtork, S.I., Exp. Fluids, 2006, vol. 40, p. 177.

    Article  Google Scholar 

  9. Claypole, T.C., Pollutant Formation in Swirling Jets, PhD Thesis, Cardiff: Univ. Wales, 1980.

    Google Scholar 

  10. Syred, N. and Bee, J.M., Astronaut. Acta, 1972, vol. 17, p. 783.

    Google Scholar 

  11. Loiseleux, T., Chomaz, J.-M., and Huerre, P., Phys. Fluids, 1998, vol. 1, p. 1120.

    Article  ADS  Google Scholar 

  12. Lim, D. and Redekopp, L., Eur. J. Mech., 1998, vol. 17, p. 165.

    Article  Google Scholar 

  13. Gallaire, F. and Chomaz, J.-M., Phys. Fluids, 2003, vol. 12, p. 2622.

    Article  ADS  Google Scholar 

  14. Sipp, D., Fabre, D., Michelin, S., and Jacquin, L., J. Fluid Mech., 2005, vol. 526, p. 67.

    Article  ADS  MathSciNet  Google Scholar 

  15. Fridman, A.M., Phys.—Usp., 2008, vol. 51, no. 3, p. 213.

    Article  ADS  MathSciNet  Google Scholar 

  16. Meliga, P., Sipp, D., and Chomaz, J.-M., J. Fluid Mech., 2008, vol. 600, p. 373.

    Article  ADS  MathSciNet  Google Scholar 

  17. Lesshafft, L. and Huerre, P., Phys. Fluids, 2007, vol. 19, 024102.

    Article  ADS  Google Scholar 

  18. Di Pierro, B. and Abid, M., Eur. Phys. J. B, 2012, vol. 85, p. 69.

    Article  ADS  Google Scholar 

  19. Yu, N. and Monkewitz, P.A., Phys. Fluids A, 1990, vol. 2, no. 7, p. 1175.

    Article  ADS  Google Scholar 

  20. Uberoi, M., Chow, ChuenYen., and Narain, J., Phys. Fluids, 1972, vol. 15, p. 1718.

    Article  ADS  Google Scholar 

  21. Di Pierro, B., Abid, M., and Amielh, M., Phys. Fluids, 2013, vol. 25, 084104.

    Article  ADS  Google Scholar 

  22. Moralev, I.A., Klimov, A.I., Preobrazhenskii, D.S., Tolkunov, B.N., and Kutlaliev, V.A., Teplofiz. Vys. Temp., 2010, vol. 48, no. 1 (Suppl.), p. 136.

    Google Scholar 

  23. Zavershinskii, I.P., Klimov, A.I., Makaryan, V.G., Molevich, N.E., Moralev, I.A., and Porfir’ev, D.P., Tech. Phys. Lett., 2011, vol. 37, no. 12, p. 1120.

    Article  Google Scholar 

  24. Saffman P.G., Vortex Dynamics, New York: Cambridge Univ. Press, 1992.

    MATH  Google Scholar 

  25. Ostrovskii, L.A., Rybak, S.A., and Tsimring, L.Sh., Phys.—Usp., 1986, vol. 29, no. 11, p. 1040.

    Article  ADS  Google Scholar 

  26. Zavershinskii, I.P., Kogan, E.Ya., Makaryan, V.G., Molevich, N.E., Porfir’ev, D.P., and Sugak, S.S., Tech. Phys. Lett., 2013, vol. 39, no. 4, p. 333.

    Article  ADS  Google Scholar 

  27. Dekterev, A.A., Gavrilov, A.A., and Dekterev, A.A., in Sb. tr. Mezhdunar. konf. “Sovremennye problemy prikladnoi matematiki i mekhaniki: teoriya, eksperiment i prilozheniya” (Proc. Int. Conf. “Modern Problems of Applied Mathematics and Mechanics: Theory, Experiment, and Applications”), Novosibirsk, 2011, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Zavershinskii.

Additional information

Original Russian Text © I.P. Zavershinskii, A.I. Klimov, S.E. Kurushina, V.V. Maksimov, N.E. Molevich, S.S. Sugak, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 5, pp. 762–768.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavershinskii, I.P., Klimov, A.I., Kurushina, S.E. et al. The stability of swirling flows with a heat source. High Temp 55, 746–752 (2017). https://doi.org/10.1134/S0018151X17050212

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17050212

Navigation