Skip to main content
Log in

Dynamics of plasma and ion flux in a vacuum neutron tube

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

Results of the numerical simulation of the formation of the ion beam in the accelerating gap of a vacuum neutron tube are presented. Calculations are performed with the KARAT code in a two-dimensional nonstationary formulation for plasma formed in arc discharge and inflowing into an accelerating gap with the given time dependences of parameters (density, expansion velocity). The small duration of the vacuum arc leads to a considerable change of parameters of inflowing plasma during the accelerating pulse. Two geometries are considered: the conventional and sectioned diode, in which the total voltage is divided between the anode, intermediate electrode, and cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sapozhnikov, M.G., in Sb. mater. Mezhdun. nauch.-tekhn. konf. “Portativnye generatory neitronov i tekhnologii na ikh osnove” (Proc. Int. Sci.-Tech. Conf. on Portable Neutron Generators and Technologies Based on Them), Moscow, 2012, p. 47.

    Google Scholar 

  2. Mesyats, G.A. and Barengol’ts, S.A., Phys.—Usp., 2002, vol. 45, no. 10, p. 1001.

    Article  ADS  Google Scholar 

  3. Londer, Ya.I. and Ul’yanov, K.N., High Temp., 2014, vol. 52, no. 6, p. 787.

    Article  Google Scholar 

  4. Gabovich, M.D., Fizika i tekhnika plazmennykh istochnikov ionov (Physics and Technology of Plasma Ion Sources), Moscow: Atomizdat, 1972.

    Google Scholar 

  5. Gabovich, M.D., Pleshivtsev, N.V., and Semashko, N.N., Puchki ionov i atomov dlya upravlyaemogo termoyadernogo sinteza i tekhnologicheskikh tselei (Beams of Ions and Atoms for Controlled Thermonuclear Fusion and Technological Purposes), Moscow: Energoatomizdat, 1986.

    Google Scholar 

  6. Tarakanov, V.P., User’s Manual for Code KARAT, Springfield, VA: Berkeley Research Associates, 1992.

    Google Scholar 

  7. Swain, D.W., Goldstein, S.A., Kelly, J.G., and Hadley, G.R., J. Appl. Phys., 1975, vol. 46, no. 10, p. 4604.

    Article  ADS  Google Scholar 

  8. Swain, D.W., Golgstein, S.A., Hadley, G.R., and Mix, L.P., in Proc. Int. Topical Conf. on Electron Beam Research and Technology, Albuquerque, NM: Sandia, 1976, vol. 1, p. 262.

    Google Scholar 

  9. Mesyats, G.A., Vzryvnaya elektronnaya emissiya (Explosive Electron Emission), Moscow: Fizmatlit, 2011.

    Google Scholar 

  10. Bugaev, A.S., Gushenets, V.I., Nikolaev, A.G., Oks, E.M., and Yushkov, G.Yu., Tech. Phys., 2000, vol. 45, no. 9, p. 1135.

    Article  Google Scholar 

  11. Maslennikov, S.P., Pastukhov, N.A., Chebotarev, A.V., Shkol’nikov, E.Ya., Gorbunov, M.A., and Yurkov, D.I., Yad. Fiz. Inzh., 2014, vol. 5, no. 3, p. 229.

    Google Scholar 

  12. Agafonov, A.V. and Tarakanov, V.P., Phys. Part. Nucl. Lett., 2014, vol. 11, no. 5, p. 573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Agafonov.

Additional information

Original Russian Text © A.V. Agafonov, V.P. Tarakanov, S.G. Kladko, S.P. Maslennikov, D.S. Stepanov, E.Ya. Shkol’nikov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 5, pp. 692–697.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonov, A.V., Tarakanov, V.P., Kladko, S.G. et al. Dynamics of plasma and ion flux in a vacuum neutron tube. High Temp 55, 672–677 (2017). https://doi.org/10.1134/S0018151X17050017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17050017

Navigation