Skip to main content
Log in

Correlation between temperature dependences of thermal expansivity and heat capacity up to the melting point of tantalum

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Following the course of previously published series, this work studies in detail the correlation of the volumetric thermal expansion coefficient β(T) and the heat capacity C(T) of refractory tantalum. It is demonstrated that a clear correlation β(C) takes place in the lower temperature range and remains up to the metal melting point inclusively. Significant deviation from lower temperature linear behavior of the β(C) dependence occurs when the heat capacity reaches the classical 3R Dulong–Petit limit. The temperature dependence of differential Grüneisen parameter γ' ~ (∂β/∂С) is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodryakov, V.Yu., High Temp., 2014, vol. 52, no. 6, p. 840.

    Article  Google Scholar 

  2. Bodryakov, V.Yu., Open Sci. J. Mod. Phys., 2015, vol. 2, no. 1, p. 10.

    Google Scholar 

  3. Bodryakov, V.Yu. and Bykov, A.A., Glass Ceram., 2015, nos. 1–2, p. 67.

    Article  Google Scholar 

  4. Bodryakov, V.Yu., High Temp., 2015, vol. 53, no. 5, p. 643.

    Article  Google Scholar 

  5. Bodryakov, V.Yu. and Babintsev, Yu.N., Phys. Solid State, 2015, vol. 57, no. 6, p. 1264.

    Article  ADS  Google Scholar 

  6. Ochkov, V.F., Ustyuzhanin, E.E., Ko, Ch.K., and Shishakov, V.V., High Temp., 2015, vol. 53, no. 4, p. 515.

    Article  Google Scholar 

  7. Buckman, R.W., JOM, 2000, vol. 52, no. 3, p. 40.

    Article  Google Scholar 

  8. Kelley, K.K., J. Chem. Phys., 1940, vol. 8, no. 4, p. 316.

    Article  ADS  Google Scholar 

  9. Keesom, W.H. and Desirant, M., Phys. A, 1941, vol. 8, no. 2, p. 273.

    ADS  Google Scholar 

  10. Desirant, M., Phys. Soc., London, 1947, vol. 2. p. 124.

    Google Scholar 

  11. Worley, R.D., Zemansky, M.W., and Boorse, H.A., Phys. Rev., 1955, vol. 99, no. 2, p. 447.

    Article  ADS  Google Scholar 

  12. Clusius, K. and Losa, C.G., Z. Naturforsch., A: Astrophys., Phys. Phys. Chem., 1955, vol. 10a, no. 12, p. 939.

    Google Scholar 

  13. White, D., Chou, C., and Johnston, H.L., Phys. Rev., 1958, vol. 109, no. 3, p. 797.

    Article  ADS  Google Scholar 

  14. Sterrett, K.F. and Wallace, W.E., J. Am. Chem. Soc., 1958, vol. 80, no. 13, p. 3176.

    Article  Google Scholar 

  15. Corruccini, R.J. and Gniewek, J.J., Specific Heats of Technical Solids at Low Temperatures: A Compilation from the Literature, National Bureau of Standards Monograph NBS_21, Washington: U. S. Government Print. Office, 1960.

    Book  Google Scholar 

  16. Kelley, K.K., Contributions to the Data on Theoretical Metallurgy. XIII. High Temperature Heat Content, Heat Capacity and Entropy Data for the Elements and Inorganic Compounds, Washigton: U. S. Government Print. Office, 1960.

    Google Scholar 

  17. Rasor, N.S. and McClelland, J.D., J. Phys. Chem. Solids, 1960, vol. 15, nos. 1–2, p. 17.

    Article  ADS  Google Scholar 

  18. Hoch, M. and Johnston, H.L., J. Phys. Chem., 1961, vol. 65, no. 5, p. 855.

    Article  Google Scholar 

  19. Lowenthal, G.C., Aust. J. Phys., 1963, vol. 16, no. 1, p. 47.

    Article  ADS  Google Scholar 

  20. Morin, F.J. and Maita, J.P., Phys. Rev., 1963, vol. 129, no. 3, p. 1115.

    Article  ADS  Google Scholar 

  21. Taylor, R.E. and Finch, R.A., J. Less-Common Met., 1964, vol. 6, no. 4, p. 283.

    Article  Google Scholar 

  22. Cezairliyan, A., McClure, J.L., and Beckett, C.W., J. Res. Natl. Bur. Stand. (U. S.), 1971, vol. 75A, no. 1, p. 1.

    Article  Google Scholar 

  23. Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., and Wagman, D.D., Selected Values of the Thermodynamic Properties of the Elements, Metals Park, OH: Am. Soc. Met., 1973.

    Google Scholar 

  24. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh (Thermal Properties of Materials at Low Temperatures), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  25. Lebedev, S.V. and Mozharov, G.I., Teplofiz. Vys. Temp., 1977, vol. 15, no. 1, p. 53.

    Google Scholar 

  26. Gilchrist, K.E. and Preston, S.D., High Temp.–High Pressures, 1979, vol. 11, no. 6, p. 643.

    Google Scholar 

  27. Robie, R.A., Hemingway, B.S., and Fisher, J.R., in Geol. Surv. Bull., Washington, DC: U. S. Government Print. Office, 1979, no. 1452.

  28. Cezairliyan, A. and Miiller, A.P., Int. J. Thermophys., 1980, vol. 1, no. 2, p. 195.

    Article  ADS  Google Scholar 

  29. Gurvich, L.V., Veits, I.V., Medvedev, V.A., et al., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie (Thermodynamic Properties of Individual Substances: A Reference Book), 4 vols., Glushko, V.P., Ed., Moscow: Nauka, 1982, vol. 4, parts 1 and 2.

  30. Kuentzler, R., Phys. Lett. A, 1984, vol. 104, no. 4, p. 221.

    Article  ADS  Google Scholar 

  31. Drits, M.E., Budberg, P.B., Burkhanov, G.S., Drits, A.M., and Panovko, V.M., Svoistva elementov. Spravochnoe izdanie (Properties of Elements: A Reference Book), Drits, M.E., Ed., Moscow: Metallurgiya, 1985.

  32. Fizicheskie velichiny. Spravochnoe izdanie (Physical Quantities: A Reference Book) Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

    Google Scholar 

  33. Takahashi, Y. and Nakamura, J., Thermochim. Acta, 1996, vols. 282–283, p. 317.

    Article  Google Scholar 

  34. Chase, M.W., J. Phys. Chem. Ref. Data, 1998, no. 9, p. 1.

    Google Scholar 

  35. Miloševic, N.D., Vukovic, G.S., Pavicic, D.Z., and Maglic, K.D., Int. J. Thermophys., 1999, vol. 20, no. 4, p. 1129.

    Article  Google Scholar 

  36. Kraftmakher, Ya., Phys. Rep., 2002, vol. 356, p. 1.

    Article  ADS  Google Scholar 

  37. Handbook ASM Ready Reference. Thermal Properties of Metals, Cverna, F., Ed., Materials Park, OH: ASM Int., 2002.

    Google Scholar 

  38. Maglic, K.D., Int. J. Thermophys., 2003, vol. 24, no. 2, p. 489.

    Article  Google Scholar 

  39. Dinsdale, A.T., SGTE Data for Pure Elements, Teddington: NPL Materials Centre, 2007.

    Google Scholar 

  40. http://riodb.ibase.aist.go.jp/TPDB/DBGVsupport/English

  41. Kaye, G.W.C. and Laby, T.H., General Physics. Specific Heat Capacities. http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_6.html

  42. Bodryakov, V.Yu., High Temp., 2013, vol. 51, no. 2, p. 206.

    Article  Google Scholar 

  43. Worthing, A.J., Phys. Rev., 1926, vol. 28, no. 1, p. 190.

    Article  ADS  Google Scholar 

  44. Nix, F.C. and Macnair, D., Phys. Rev., 1942, vol. 61, nos. 1–2, p. 74.

    Article  ADS  Google Scholar 

  45. Edwards, J.W., Speiser, R., and Johnston, H.L., J. Appl. Phys., 1951, vol. 22, no. 4, p. 424.

    Article  ADS  Google Scholar 

  46. Corruccini, R.J. and Gnievek, J.J., Thermal Expansion of Technical Solids at Low Temperatures. A Compilation from the Literature, National Bureau of Standards Monograph NBS_29, Washington: U. S. Government Print. Office, 1961.

    Google Scholar 

  47. Andres, K., Cryogenics, 1961, vol. 2, no. 2, p. 93.

    Article  ADS  MathSciNet  Google Scholar 

  48. White, G.K., Cryogenics, 1962, vol. 2, no. 5, p. 292.

    Article  ADS  Google Scholar 

  49. Amonenko, V.M., Vasyutinskii, B.M., Kartmazov, G.N., Smirnov, Yu.N., and Finkel’, V.A., Fiz. Met. Metalloved., 1963, vol. 15, no. 3, p. 444.

    Google Scholar 

  50. Amonenko, V.M., V’yugov, P.N., and Gumenyuk, V.S., Teplofiz. Vys. Temp., 1964, vol. 2, no. 1, p. 29.

    Google Scholar 

  51. Andres, K., Phys. Kondens. Mater., 1964, vol. 2, no. 4, p. 294.

    ADS  Google Scholar 

  52. V’yugov, P.N. and Gumenyuk, V.S., Teplofiz. Vys. Temp., 1965, vol. 3, no. 6, p. 936.

    Google Scholar 

  53. Smirnov, Yu.M. and Finkel’, V.A., Zh. Eksp. Teor. Fiz., 1966, vol. 22, no. 4, p. 750.

    Google Scholar 

  54. Novikova, S.I., Teplovoe rasshirenie tverdykh tel. Spravochnoe izdanie (Thermal Expansion of Solids: A Reference Book), Moscow: Nauka, 1974.

    Google Scholar 

  55. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D., in Thermophysical Properties of Matter, New York: Plenum, 1975, vol. 12, p. 1938.

    Google Scholar 

  56. Waseda, Y., Hirata, K., and Ohtani, M., High Temp.–High Pressures, 1975, vol. 7, no. 2, p. 221.

    Google Scholar 

  57. Petukhov, V.A., Chekhovskoi, V.Ya., and Mozgovoi, A.G., Teplofiz. Vys. Temp., 1977, vol. 15, no. 6, p. 534.

    Google Scholar 

  58. Müller, A.P. and Cezairliyan, A., Int. J. Thermophys., 1982, vol. 3, no. 3, p. 259.

    Article  ADS  Google Scholar 

  59. Müller, A.P. and Cezairliyan, A., Int. J. Thermophys., 1991, vol. 12, no. 4, p. 643.

    Article  ADS  Google Scholar 

  60. Wang, K. and Reeber, R.R., Mater. Sci. Eng., R, 1998, vol. 23, no. 3, p. 101.

    Article  Google Scholar 

  61. Martienssen, W. and Warlimont, H., Springer Handbook of Condensed Matter and Materials Data, Berlin: Springer, 2005, vol. 1, p. 1123.

    ADS  Google Scholar 

  62. Bollinger, R.K., White, B.D., Neumeier, J.J., Sandim, H.R.Z., Suzuki, Y., Santos, C.A.M., Avci, R., Migliori, A., and Betts, J.B., Phys. Rev. Lett., 2011, vol. 107, no. 7, p. 075503.

    Article  Google Scholar 

  63. Kaye, G.W.C. and Laby, T.H., General Physics. Thermal Expansion. http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html

  64. KnowledgeDoor. www.knowledgedoor.com/2/elements_handbook/linear_thermal_expansion_coefficient.html

  65. Bodryakov, V.Yu. and Bashkatov, A.N., Russ. Metall. (Engl. Transl.), 2013, no. 9, p. 671.

    Article  ADS  Google Scholar 

  66. Lynn, J.E., Trela, W.J., and Meggers, K., Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, vol. 192, no. 3, p. 318.

    Article  ADS  Google Scholar 

  67. Leupold, H.A., Iafrate, G.J., Rothwart, F., Breslin, J.T., Edmiston, D., and Coin, T.R., J. Low Temp. Phys., 1977, vol. 28, nos. 3–4, p. 241.

    Article  ADS  Google Scholar 

  68. Leisure, R.G., Hsu, D.K., and Seiber, B.A., J. Appl. Phys., 1973, vol. 44, no. 8, p. 3394.

    Article  ADS  Google Scholar 

  69. Korn, G. and Korn, T., Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas, New York: McGraw-Hill, 1968.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bodryakov.

Additional information

Original Russian Text © V.Yu. Bodryakov, 2016, published in Teplofizika Vysokikh Temperatur, 2016, Vol. 54, No. 3, pp. 336–342.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodryakov, V.Y. Correlation between temperature dependences of thermal expansivity and heat capacity up to the melting point of tantalum. High Temp 54, 316–321 (2016). https://doi.org/10.1134/S0018151X16030020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X16030020

Navigation