Skip to main content
Log in

Electro-optical phenomena in a gas-dispersed jet flow around a solid body

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

In continuing studies [1–4] in which optics and electrification of particles colliding with a body around which a high-speed two-phase jet flows are considered, there was an attempt to explain the experimentally observed luminescence [5] of a conducting body, bombarded by microparticles, by the presence of a reverse unipolar current (from rebounded particles) exciting carrier-gas molecules. The process of charge acquisition by a particle in collision with a solid is complex: not only the value of the charge but even its sign are unknown in many cases [6]. A simple model is proposed for estimating the characteristic values of the reverse current density and the spatial distribution of the gas luminescence energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller, A.B., Molleson, G.V., and Stasenko, A.L., Uch. Zap. TsAGI, 2007, vol. 38, no. 3–4, p. 92.

    Google Scholar 

  2. Molleson, G.V. and Stasenko, A.L., High Temp., 2011, vol. 49, no. 1, p. 72.

    Article  Google Scholar 

  3. Molleson, G.V. and Stasenko, A.L., High Temp., 2012, vol. 50, no. 6, p. 755.

    Article  Google Scholar 

  4. Molleson, G.V. and Stasenko, A.L., Mat. Model., 2011, vol. 23, no. 12, p. 49.

    MATH  MathSciNet  Google Scholar 

  5. Vasilevskii, E.B., Osiptsov, A.N., Chirikhin, A.V., and Yakovleva, L.V., Inzh.–Fiz. Zh., 2001, vol. 74, no. 6, p. 34.

    Google Scholar 

  6. Muchnik, V.M. and Fishman, B.E., Elektrizatsiya grubodispersnykh aerozolei v atmosfere (Electrification of Coarsely Dispersed Aerosols in the Atmosphere), Leningrad: Gidrometeoizdat, 1982.

    Google Scholar 

  7. Kim, O.V. and Dunn, P.F., Aerosol Sci. Technol., 2010, vol. 44, no. 4, p. 292.

    Article  Google Scholar 

  8. Granovskii, V.L., Elektricheskii tok v gaze (Electric Current in Gases), Moscow: Nauka, 1971.

    Google Scholar 

  9. Raizer, Yu.P., Gas Discharge Physics, New York: Springer-Verlag, 1991.

    Book  Google Scholar 

  10. Chernyi, L.T., Fluid Dyn., 1980, vol. 15, no. 4, p. 538.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Millikan, R.A., Phys. Rev., 1923, vol. 22, p. 1.

    Article  ADS  Google Scholar 

  12. Kavanau, L.L., Trans. ASME, 1955, vol. 77, no. 5, p. 613.

    Google Scholar 

  13. Oesterlé, B. and Bui Dinh, T., Exp. Fluids, 1998, vol. 25, p. 16.

    Article  Google Scholar 

  14. Rubinow, S.I. and Keller, J.B., J. Fluid Mech., 1961, vol. 11, p. 447.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dennis, S.C.R., Singh, S.N., and Ingham, D.B., J. Fluid Mech., 1980, vol. 101, part 2, p. 257.

    Article  ADS  MATH  Google Scholar 

  16. Lukerchenko, N.N., Kharlamov, A.A., and Kvurt, Yu.P., in Materialy VI Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh (NPNJ-2006), S. Peterburg, 2006.(Proceedings of the Sixth International Conference on Non-Equilibrium Processes in Nozzles and Jets (NPNJ-2006), St. Petersburg, Russia, June 26–July 1, 2006., Moscow: Vuzovskaya Kniga, 2006, p. 230.

    Google Scholar 

  17. Lukerchenko, N., in Materialy VIII Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh (NPNJ-2010), Alushta, Krym, 2006 (Proceedings of the Eighth International Conference on NonEquilibrium Processes in Nozzles and Jets (NPNJ-2010), Alushta, Republic of Crimea, May 25–31, 2006), Moscow: Moscow Aviation Institute (State Technical University), 2010, p. 82.

    Google Scholar 

  18. Stasenko, A.L., Inzh.–Fiz. Zh., 2007, vol. 80, no. 5, p. 38.

    Google Scholar 

  19. Lashkov, V.A., Inzh.–Fiz. Zh., 1991, vol. 60, no. 2, p. 197.

    Google Scholar 

  20. Tabakoff, W. and Hamed, A., Trans. Inst. Fluid-Flow Machinery, 1976, p. 221.

    Google Scholar 

  21. Kangur, Kh.F. and Kleis, I.R., Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1988, no. 5, p. 182.

    Google Scholar 

  22. Wall, S.V., John, W., Wang, H.C., and Goren, S.L., Aerosol Sci. Technol., 1990, vol. 12, p. 926.

    Article  Google Scholar 

  23. Bashkin, V.A. and Egorov, I.V., Chislennoe modelirovanie dinamiki vyazkogo sovershennogo gaza (Numerical Simulation of the Dynamics of a Viscous Perfect Gas), Moscow: Fizmatlit, 2012.

    Google Scholar 

  24. Belotserkovskii, O.M. and Davydov, Yu.M., Metod krupnykh chastits v gazovoi dinamike (Method of Large Particles in Gas Dynamics), Moscow: Nauka, 1982.

    Google Scholar 

  25. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  26. Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.

    Article  Google Scholar 

  27. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

    Article  Google Scholar 

  28. Varaksin, A.Yu., Protasov, M.V., and Teplitskii, Yu.S., High Temp., 2014, vol. 52, no. 4, p. 554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Molleson.

Additional information

Original Russian Text © G.V. Molleson, A.L. Stasenko, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 6, pp. 900–909.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molleson, G.V., Stasenko, A.L. Electro-optical phenomena in a gas-dispersed jet flow around a solid body. High Temp 53, 855–864 (2015). https://doi.org/10.1134/S0018151X15050235

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15050235

Keywords

Navigation