Skip to main content
Log in

Principles of heat accumulation and heat-accumulating materials in use

  • Reviews
  • Published:
High Temperature Aims and scope

Abstract

This work is aimed at analysis of materials proposed for heat accumulation. The heat-accumulating materials are classified against the composition class and the operation principles. The principles of heat accumulation and the prospective energy-intensive heat-accumulating compositions and the method of their production are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popel’, O.S. and Fortov, V.E., Energetika v sovremennom mire (Power Engineering in the Modern World), Dolgoprudnyi, Moscow region, Russia: Intellekt, 2011.

    Google Scholar 

  2. Protsenko, A.N., Energetika segodnya i zavtra (Power Engineering—Today and Tomorrow), Moscow: Molodaya Gvardiya, 1987.

    Google Scholar 

  3. Kirillin, V.A., Energetika segodnya i zavtra (Power Engineering—Today and Tomorrow), Moscow: Pedagogika, 1983.

    Google Scholar 

  4. Babaev, B.D. and Danilin, V.N., Energoakkumuliruyushchie Ustanovki. Uchebnoe posobie (Energy Accumulation Facilities: A Textbook), Makhachkala, Dagestan, Russia: Dagestan State University, 2002.

    Google Scholar 

  5. Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal Processes, New York: Wiley, 2013.

    Book  Google Scholar 

  6. Zamaraev, K.I., Fotokataliticheskoe preobrazovanie solnechnoi energii: Chast’ 1. Khimicheskie i biologicheskie metody (Photocatalytic Conversion of Solar Energy: Part 1. Chemical and Biological Methods), Novosibirsk: Nauka, 1985.

    Google Scholar 

  7. Sorensen, B., Renewable Energy Conversion, Transmission, and Storage, London: Academic, 2007.

    Google Scholar 

  8. Twidell, J. and Weir, T., Renewable Energy Resources, New York: Taylor and Francis, 1986.

    Book  Google Scholar 

  9. Kharchenko, N.V., Individual’nye solnechnye ustanovki (Individual Solar Plants), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  10. Ozawa, T., Kamimoto, M., Sakamoto, R., Takahashi, Y., and Kanari, K., Bull. Electrotech. Lab., 1980, vol. 44, nos. 11–12, p. 707.

    Google Scholar 

  11. Vasil’ev, Yu.S., Elistratov, V.V., Mukhammadiev, M.M., and Pretro, G.A., Vozobnovlyaemye istochniki energii i gidroakkumulirovanie (Renewable Energy Sources and Hydro-Accumulation), St. Petersburg: St. Petersburg State Technical University, 1995.

    Google Scholar 

  12. Vasina, N.A., Gryzlova, S.E., and Shaposhnikova, S.G., Teplofizicheskie svoistva mnogokomponentnykh sistem (Thermal and Physical Properties of Multicomponent Systems), Moscow: Khimiya, 1984.

    Google Scholar 

  13. Guliya, N.V., Nakopiteli energii (Energy Storage Devices), Moscow: Nauka, 1980.

    Google Scholar 

  14. Danilin, V.N., Fizicheskaya khimiya teplovykh akkumulyatorov. Uchebnoe posobie (Physical Chemistry of Thermal Accumulators: A Textbook), Krasnodar, Russia: Krasnodar Polytechnic Institute, 1981.

    Google Scholar 

  15. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (A Concise Chemical Reference Book), Moscow: Khimiya, 1978.

    Google Scholar 

  16. Environmental Chemistry, Bockris, J.O’M., Ed., New York: Plenum, 1977.

    Google Scholar 

  17. Poberezhnyuk, M.M., Kudrya, S.A., and Minchenkov, T.G., Geliotekhnika, 1984, no. 3, p. 22.

    Google Scholar 

  18. Reznitskii, L.A., Teplovye akkumulyatory (Thermal Accumulators), Moscow, 1996.

    Google Scholar 

  19. Krestovnikov, A.N. and Vigdorovich, V.N., Khimicheskaya termodinamika (Chemical Thermodynamics), Moscow: Metallurgiya, 1973.

    Google Scholar 

  20. Morachevskii, A.G. and Sladkov, I.B., Fizikokhimicheskie svoistva molekulyarnykh neorganicheskikh soedinenii (Eksperimental’nye dannye i metody rascheta). Spravochnik (Physico-Chemical Properties of Molecular Inorganic Compounds (Experimental Data and Calculation Methods): A Reference Book), Leningrad: Khimiya, 1987.

    Google Scholar 

  21. Magomedov, M.M., Cand. Sci. (Chem.) Dissertation, Moscow: RGB, 2000.

    Google Scholar 

  22. Da Rosa, A.V., Fundamentals of Renewable Energy Processes, Oxford: Academic, 2009.

    Google Scholar 

  23. Babaev, B.D., Teplo- i kholodoakkumuliruyushchie materialy i ikh ispol’zovanie (Heat- and Cold-Storage Materials and Their Usage), Available from VINITI, 2002, Moscow, no. 245-B2002.

    Google Scholar 

  24. Markov, B.F., Termodinamika kompleksnykh soedinenii v rasplavakh solevykh sistem (Thermodynamics of Complex Compounds in Molten Salt Systems), Kiev: Naukova Dumka, 1988.

    Google Scholar 

  25. Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie (Thermodynamic Properties of Individual Substances: A Reference Book), 3rd. ed., revised and expanded, Gurvich, L.V., Veits, V.I., Medvedev, V.A., Krachkuruzov, V.A., Yungman, V.S., Bergman, V.A., Baibuz, V.F., Iorish, V.S., Yurkov, V.N., Gorbov, S.I., Nazarenko, I.I., Dorofeeva, O.V., Kuratova, V.F., Osina, E.L., Gusarov, A.V., Leonidov, V.Ya., Przheval’skii, I.N., Rogatskii, A.L., Efremov, Yu.M., Ryabova, V.G., Zitserman, V.Yu., Hait, Yu.G., Shenyavskaya, E.A., Efimov, M.E., Kulemza, V.A., Khodeev, Yu.S., Tomberg, S.E., Vdovin, V.N., Yakobson, A.Ya., and Demidova, M.S., Eds., Moscow: Nauka, 1981, vol. 3, part 2.

    Google Scholar 

  26. Zakharov, A.M., Diagrammy sostoyaniya dvoinykh i troinykh sistem (Phase Diagrams of Binary and Ternary Systems), Moscow: Metallurgiya, 1978.

    Google Scholar 

  27. Diagrammy plavkosti solevykh sistem: Chast’ I. Dvoinye sistemy s obshchim anionom. Spravochnik (A Reference Book on Melting Diagrams of Salt Systems: Part I. Binary Systems with Common Anion), Posypaiko, V.E. and Alekseeva, E.A., Eds., Moscow: Metallurgiya, 1977.

    Google Scholar 

  28. Diagrammy plavkosti solevykh sistem: Chast’ II. Dvoinye sistemy s obshchim kationom. Spravochnik (A Reference Book on Melting Diagrams of Salt Systems: Part II. Binary Systems with Common Cation), Posypaiko, V.E. and Alekseeva, E.A., Eds., Moscow: Metallurgiya, 1977.

    Google Scholar 

  29. Diagrammy plavkosti solevykh sistem: Chast’ III. Dvoinye sistemy s obshchim kationom. Spravochnik (A Reference Book on Melting Diagrams of Salt Systems: Part III. Binary Systems with Common Cation), Posypaiko, V.E. and Alekseeva, E.A., Eds., Moscow: Metallurgiya, 1979.

    Google Scholar 

  30. Diagrammy plavkosti solevykh sistem. Troinye sistemy. Spravochnik (A Reference Book on Melting Diagrams of Salt Systems: Ternary Systems), Posypaiko, V.E. and Alekseeva, E.A., Eds., Moscow: Metallurgiya, 1977.

    Google Scholar 

  31. Diagrammy plavkosti solevykh sistem. Troinye vzaimnye sistemy. Spravochnik (A Reference Book on Melting Diagrams of Salt Systems: Ternary Reciprocal Systems), Posypaiko, V.E. and Alekseeva, E.A., Eds., Moscow: Metallurgiya, 1977.

    Google Scholar 

  32. Diagrammy plavkosti solevykh sistem. Mnogokomponentnye sistemy. Spravochnik (A Reference Book on Melting Diagrams of Salt Systems: Multicomponent Systems), Posypaiko, V.E. and Alekseeva, E.A., Eds., Moscow: Metallurgiya, 1977.

    Google Scholar 

  33. Spravochnik po plavkosti sistem iz bezvodnykh neorganicheskikh solei: Tom 1. Dvoinye sistemy (A Reference Book on Melting of Systems from Anhydrous Inorganic Salts: Volume 1. Bynary Systems), Voskresenskaya, N.K., Ed., Moscow: Academy of Sciences of the Soviet Union, 1961.

    Google Scholar 

  34. Spravochnik po plavkosti sistem iz bezvodnykh neorganicheskikh solei: Tom 2. Sistemy troinye i bolee slozhnye (A Reference Book on Melting of Systems from Anhydrous Inorganic Salts: Volume 2. Ternary and More Complex Systems), Voskresenskaya, N.K., Ed., Moscow: Academy of Sciences of the Soviet Union, 1961.

    Google Scholar 

  35. Zamaldinova, G.I., Garkushin, I.K., Garkushin, A.I., and Parfenova, S.N., Russ. J. Inorg. Chem., 2012, vol. 57, no. 6, p. 888.

    Article  Google Scholar 

  36. Dibirov, Ya.A., in Materialy V shkoly molodykh uchenykh im. E.E. Shpil’raina, Makhachkala, Dagestan, 2012 (Proceedings of the V Young Scientists’ School “Actual Problems of Renewable Energy” named after the corresponding member of the Russian Academy of Sciences E.E. Shpilrain, Makhachkala, Dagestan, Russia, October 11–12, 2012), Alkhasov, A.B., Ed., Makhachkala: ALEF, 2012, p. 167.

  37. Son, E.E., High Temp., 2013, vol. 51, no. 3, p. 351.

    Article  Google Scholar 

  38. Stankus, S.V., Khairulin, R.A., Mozgovoi, A.G., Roshchupkin, V.V., and Pokrasin, M.A., High Temp., 2006, vol. 44, no. 2, p. 306.

    Article  Google Scholar 

  39. Stankus, S.V., Khairulin, R.A., Mozgovoi, A.G., Roshchupkin, V.V., and Pokrasin, M.A., High Temp., 2004, vol. 42, no. 6, p. 999.

    Article  Google Scholar 

  40. Popel’, P.S., Yagodin, D.A., Mozgovoi, A.G., and Pokrasin, M.A., High Temp., 2010, vol. 48, no. 2, p. 181.

    Article  Google Scholar 

  41. Stankus, S.V., Khairulin, R.A., Martynets, V.G., and Bezverkhii, P.P., High Temp., 2013, vol. 51, no. 5, p. 695.

    Article  Google Scholar 

  42. Bazaev, E.A. and Bazaev, A.R., High Temp., 2013, vol. 51, no. 2, p. 224.

    Article  Google Scholar 

  43. Babaev, B.D., Cand. Sci. (Chem.) Dissertation, Moscow: RGB, 1996.

    Google Scholar 

  44. Schroder, J., US Patent 3709209, 1973.

  45. Chernova, L.I., Rodionova, E.K., Martynova, M.N., et al., Obz. Teplofiz. Svoistvam Veshchestv, 1980, no. 3, p. 56.

    Google Scholar 

  46. Marchidan, D.J. and Pandele, L., Rev. Roum. Chim., 1977, vol. 22, no. 1, p. 7.

    Google Scholar 

  47. Turovskii, V.B., Shter, G.E., Trunin, A.S., and Savushkina, I.N., in Ispol’zovanie Solntsa i drugikh istochnikov luchistoi energii v materialovedenii (The Use of the Sun and Other Radiant Energy Sources in Materials Science), Kiev: Naukova Dumka, 1983, p. 238.

    Google Scholar 

  48. Sinistri, C., Riccardo, R., and Magistris, A., Phys. Chem., 1967, vol. 71, no. 4, p. 376.

    Google Scholar 

  49. Markov, B.F., Tishura, T.A., and Budarina, A.M., Ukr. Khim. Zh., 1973, vol. 39, no. 1, p. 84.

    Google Scholar 

  50. Gamataeva, B.Yu., Cand. Sci. (Chem.) Dissertation, Moscow: Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 1995.

    Google Scholar 

  51. Janz, G.J., Allen, C.B., Bansal, N.P., Murphy, R.M., and Tomkins, R.P.T., Physical Properties Data Compilations Relevant to Energy Storage, Washington: National Standard Reference Data System-National Bureau of Standards, 1978.

    Google Scholar 

  52. Shishkin, N.D., Doctoral (Tech.) Dissertation, Moscow: RGB, 2005.

    Google Scholar 

  53. Malinin, N.K., Tr. Mosk. Energ. Inst., 1982, no. 581, p. 85.

    Google Scholar 

  54. Engel’sht, V.S. and Muratalieva, V.Zh., High Temp., 2013, vol. 51, no. 5, p. 645.

    Article  Google Scholar 

  55. Akhmedov, R.B. and Berchenko, M.A., in Problemy sozdaniya krupnykh solnechno-toplivnykh elektrostantsii v Uzbekistane (Problems in the Development of Large-Scale Solar-Fuel Power Plants in Uzbekistan), Tashkent: Fan, 1983, p. 23.

    Google Scholar 

  56. Babaev, B.D., Danilin, V.N., and Gasanaliev, A.M., in II Vserosiiskaya Nauchnaya konferentsiya, posvyash-chennaya pamyati professora A. G. Bergmana, 2002 (Proceedings of the Second All-Russian Scientific Conference Dedicated to the Memory of Professor A.G. Bergman, Dagestan State Pedagogical University, Makhachkala, Russia, 2002), Makhachkala: Dagestan State Pedagogical University, 2002, p. 27.

    Google Scholar 

  57. Simmons, J.A., Proceedings of the International Solar Energy Society (ISES) Meeting, Winnipeg, Canada, August 15–20, 1976, Winnipeg, 1976, vol. 8, p. 219.

    ADS  Google Scholar 

  58. Babaev, B.D. and Khalilullaev, G.M., RF Inventor’s Certificate no. 200560201, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Babaev.

Additional information

Original Russian Text © B.D. Babaev, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 5, pp. 760–776.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaev, B.D. Principles of heat accumulation and heat-accumulating materials in use. High Temp 52, 736–751 (2014). https://doi.org/10.1134/S0018151X14050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14050010

Keywords

Navigation