Skip to main content
Log in

Empirical Model of the Location of the Main Ionospheric Trough

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The empirical model of the location of the main ionospheric trough (MIT) is developed based on an analysis of data from CHAMP satellite measured at the altitudes of ~350–450 km during 2000–2007; the model is presented in the form of the analytical dependence of the invariant latitude of the trough minimum Φm on the magnetic local time (MLT), the geomagnetic activity, and the geographical longitude for the Northern and Southern Hemispheres. The time-weighted average index Kp(τ), the coefficient of which τ = 0.6 is determined by the requirement of the model minimum deviation from experimental data, is used as an indicator of geomagnetic activity. The model has no limitations, either in local time or geomagnetic activity. However, the initial set of MIT minima mainly contains data dealing with an interval of 16–08 MLT for Kp(τ) < 6; therefore, the model is rather qualitative outside this interval. It is also established that (a) the use of solar local time (SLT) instead of MLT increases the model error no more than by 5–10%; (b) the amplitude of the longitudinal effect at the latitude of MIT minimum in geomagnetic (invariant) coordinates is ten times lower than that in geographical coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annakuliev, S.K., Afonin, V.V., Deminov, M.G., and Karpachev, A.T., An empirical formula for the position of the main ionospheric trough during a magnetic storm, Geomagn. Aeron. (Engl. Transl.), 1997, vol. 37, no. 3, pp. 392–395.

    Google Scholar 

  • Ben’kova, N.P. and Zikrach, E.K., The main ionospheric trough according to ground-based observations in the Yakutsk region, in Fizicheskie protsessy v oblasti glavnogo ionosfernogo provala (Physical Processes in the Region of the Main Ionospheric Trough), Prague: Geofiz. inst., 1983, pp. 7–18.

    Google Scholar 

  • Deminov, M.G. and Karpachev, A.T., Longitudinal effect in the configuration of the main ionospheric trough. I. The position of the trough, Geomagn. Aeron., 1986, vol. 26, no. 1, pp. 63–68.

    Google Scholar 

  • Deminov, M.G., Karpachev, A.T., Annakuliev, S.K., Afonin, V.V., and Shmilauer, Ya., Dynamics of ionization troughs in the night-time subauroral F-region during geomagnetic storms, Adv. Space Res., 1996, vol. 17, no. 10, pp. 141–145.

    Article  Google Scholar 

  • Gal’perin, Yu.I., Sivtseva, L.D., Filippov, V.M., and Khalipov, V.L., Subavroral’naya verkhnyaya ionosfera (The Subauroral Upper Ionosphere), Novosibirsk: Nauka, 1990.

    Google Scholar 

  • Gustafsson, G., Papitashvili, N.E., and Papitashvili, V.O., A revised corrected geomagnetic coordinate system for epochs 1985 and 1990, J. Atmos. Terr. Phys., 1992, vol. 54, no. 11, pp. 1609–1631.

    Article  Google Scholar 

  • He, M., Liu, L., Wan, W., and Zhao, B., A study on the nighttime midlatitude ionospheric trough, J. Geophys. Res., 2011, vol. 116, A05315. doi 10.1029/2010JA016252

    Article  Google Scholar 

  • Karpachev, A.T., The dependence of the main ionospheric trough shape on longitude, altitude, season, local time, and solar and magnetic activity, Geomagn. Aeron. (Engl. Transl.), 2003, vol. 43, no. 2, pp. 239–251.

    Google Scholar 

  • Karpachev, A.T. and Afonin, V.V., Dependence of the probability of ionospheric-trough observations on the season, local time, longitude, and level of geomagnetic activity, Geomagn. Aeron. (Engl. Transl.), 1998, vol. 38, no. 3, pp. 317–324.

    Google Scholar 

  • Karpachev, A.T., Deminov, M.G., and Afonin, V.V., Model of the mid-latitude ionospheric trough on the base of Cosmos-900 and Intercosmos-19 satellites data, Adv. Space Res., 1996, vol. 18, no. 6, pp. 221–230.

    Article  Google Scholar 

  • Karpachev, A.T., Klimenko, M.V., Klimenko, V.V., and Pustovalova, L.V., Empirical model of the main ionospheric trough for the nighttime winter conditions, J. Atmos. Sol.-Terr. Phys., 2016, vol. 146, pp. 149–159.

    Article  Google Scholar 

  • Köhnlein, W. and Raitt, W.I., Position of mid-latitude trough in the topside ionosphere as deduced from ESRO-4 observations, Planet. Space Sci., 1977, vol. 25, no. 6, pp. 600–602.

    Article  Google Scholar 

  • Lee, I.T., Wang, W., Liu, J.Y., Chen, C.Y., and Lin, C.H., The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum, J. Geophys. Res., 2011, vol. 116, A06311. doi 10.1029/2010JA015544

    Google Scholar 

  • Moffett, R. and Quegan, S., The mid-latitude trough in the electron concentration of the ionospheric F-layer: A review of observations and modelling, J. Atmos. Terr. Phys., 1983, vol. 45, no. 5, pp. 315–343.

    Article  Google Scholar 

  • Prölss, G.W., The equatorward wall of the subauroral trough in the afternoon/evening sector, Ann. Geophys., 2007, vol. 25, no. 3, pp. 645–659.

    Article  Google Scholar 

  • Pryse, S.E., Kersley, L., Malan, D., and Bishop, G.J., Parameterization of the main ionospheric trough in the European sector, Radio Sci., 2006, vol. 41, RS5S14. doi 10.1029/2005RS003364

    Article  Google Scholar 

  • Rodger, A., Moffett, R., and Quegan, S., The role of ion drift in the formation of ionisation troughs in the midand high-latitude ionosphere: A review, J. Atmos. Terr. Phys., 1992, vol. 54, no. 1, pp. 1–30.

    Article  Google Scholar 

  • Starkov, G.V., Statistical dependences between magnetic activity indices, Geomagn. Aeron., 1994, vol. 34, no. 1, pp. 129–131.

    Google Scholar 

  • Themens, D.R., Jayachandran, P.T., Galkin, I., and Hall, C., The empirical Canadian high Arctic ionospheric model (E-CHAIM): NmF2 and hmF2, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 8. doi 10.1002/2017JA024398

    Google Scholar 

  • Werner, S. and Prölss, G.W., The position of the ionospheric trough as a function of local time and magnetic activity, Adv. Space Res., 1997, vol. 20, no. 9, pp. 1717–1722.

    Article  Google Scholar 

  • Wrenn, G.L., Time-weighted accumulations ap(τ) and Kp(τ), J. Geophys. Res., 1987, vol. 92, pp. 10125–10129.

    Article  Google Scholar 

  • Yang, N., Le, H., and Liu, L., Statistical analysis of the mid-latitude trough position during different categories of magnetic storms and different storm intensities, Earth Planets Space, 2016, vol. 68. doi 10.1186/s40623-016-0554-6

  • Zherebtsov, G.A., Pirog, O.M., and Razuvaev, O.I., The structure and dynamics of the high-latitude ionosphere, in Issled. po geomagnetizmu, aeronomii i fizike Solntsa (Studies on Geomagnetism, Aeronomy, and Solar Physics), Moscow: Nauka, 1986, vol. 68, pp. 165–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Deminov.

Additional information

Original Russian Text © M.G. Deminov, V.N. Shubin, 2018, published in Geomagnetizm i Aeronomiya, 2018, Vol. 58, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deminov, M.G., Shubin, V.N. Empirical Model of the Location of the Main Ionospheric Trough. Geomagn. Aeron. 58, 348–355 (2018). https://doi.org/10.1134/S0016793218030064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218030064

Navigation