Skip to main content
Log in

Magnetohydrodynamic simulation of a solar flare: 1. Current sheet in the corona

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of modeling the preflare situation in the solar corona, obtained using a numerical solution for a complete set of three-dimensional MHD equations, are reviewed. Any assumptions concerning the flare development character or the active region’s behavior before a flare are not introduced. The initial and boundary conditions on the photosphere are specified from magnetic field measurements before a flare. The photospheric field sources are approximated by magnetic dipoles. The usage of the PERESVET program indicated that a current sheet is formed in the vicinity of a singular magnetic field line in the corona. The sheet is formed due to disturbances coming from the photosphere. The energy necessary for a flare is stored in the current sheet magnetic field during 2–3 days. The main construction principles of the PERESVET program, which makes it possible to use the maps of a measured photospheric field as boundary conditions, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari, T., Luciami, J.F., Mikic, Z., and Linker, J.J., A Twisted Flux Rope Model for Coronal Mass Ejctions and Two-Ribbon Flares, Astrophys. J., 2000, vol. 529, no. 1, pp. L49–L52.

    Article  Google Scholar 

  • Aulanier, G., Deluca, E.E., Antiochos, S.K., Mcmullen, R.A., and Golub, L., The Topology and Evolution of the Bastille Day Flare, Astrophys. J., 2000, vol. 540, no. 2, pp. 1126–1142.

    Article  Google Scholar 

  • Bilenko, I., Podgorny, A.I., and Podgorny, I.M., The Possibility of Energy Accumulation in a Current Sheet above the NOAA 9077 Active Region Prior to the Flare on 14 July 2000, Sol. Phys., 2002, vol. 207, no. 2, pp. 323–336.

    Article  Google Scholar 

  • Bratenahl, A. and Hirsch, W., An Experimental Study of a Neutral Point in a Plasma Ball, Am. Phys. Soc., 1966, vol. 11, p. 580.

    Google Scholar 

  • Brushlinskii, K.V., Zaborov, A.M., and Syrovatskii, S.I., Numerical Analysis of a Current Sheet in the Vicinity of Magnetic Zero Line, Fiz. Plazmy, 1980, vol. 6, no. 2, pp. 297–311.

    Google Scholar 

  • Cox, D.P. and Tucker, W.H., Ionization Equilibrium and Radiative Cooling of a Low-Density Plasma, Astrophys. J., 1969, vol. 157, no. 3, pp. 1157–1167.

    Article  Google Scholar 

  • Den, O.G., Relation between the Origination of Solar Flares and Specific Features of the Magnetic Field Differential Characteristics, Astron. Zh., 2008, vol. 85, no. 11, pp. 1035–1041.

    Google Scholar 

  • Forbes, T.G., Malherbe, J.M., and Priest, E.R., The Formation of Flare Loops by Magnetic Reconnection and Chromospheric Ablation, Sol. Phys., 1989, vol. 120, no. 2, pp. 258–307.

    Article  Google Scholar 

  • Gorbachev, V.S., Kel’ner, S.R., Somov, B.V., and Shvarts, A.S., A New Topological Approach to the Problem of a Solar Flare Trigger, Astron. Zh., 1988, vol. 65, no. 6, pp. 601–612.

    Google Scholar 

  • Harris, E.G., On Plasma Sheath Separating Regions of Oppositely Directed Magnetic Field, Nuovo Cimento A, 1962, vol. 23, no. 1, pp. 115–121.

    Article  Google Scholar 

  • Jing, J., Tan, C., Yuan, Y., et al., Free Magnetic Energy and Flare Productivity of Active Regions, Astrophys. J., 2010, vol. 713, pp. 440–449.

    Article  Google Scholar 

  • Kliem, B., Titov, V.S., and Torok, T., Formation of Current Sheets and Sigmoidal Structure by the Kink Instability of a Magnetic Loop, Astron. Astrophys., 2004, vol. 413, no. 1, pp. L23–L26.

    Article  Google Scholar 

  • Kusano, K., Yokoyama, T., Maeshiroi, T., and Sakurai, T., Annihilation of Magnetic Helicity, Adv. Space Res., 2003, vol. 32, no. 10, pp. 1931–1936.

    Article  Google Scholar 

  • Lin, J., CME-Flare Association Deduced from Catastrophic Model of CMEs, Sol. Phys., 2004, vol. 219, no. 1, pp. 169–196.

    Article  Google Scholar 

  • Lin, R.P., Krucker, S., Hurford, G.J., et al., RHESSI Observations of Particles Acceleration and Energy Release in an Intense Gamma-Ray Line Flare, Astrophys. J., 2003, vol. 595, no. 2, p. L69.

    Article  Google Scholar 

  • Linker, J.A., Van Hoven, G., and Schnack, D.D., Effects of the Driving Mechanism in MHD Simulation of CME, Geophys. Monogr. Am. Geophys. Union, 1990, vol. 58, pp. 378–392.

    Google Scholar 

  • Lugaz, N., Vourlidas, A., Roussev, I.I., and Morgan, H., Solar-Terrestrial Simulation in the STEREO Era: The 24–25 January 2007 Eruptions, Sol. Phys., 2009, vol. 256, no. 1/2, pp. 269–284.

    Article  Google Scholar 

  • Oreshina, I.V. and Somov, B.V., Evolution of the Photospheric Magnetic Field and Coronal Zero Points before Solar Flares, Pis’ma Astron. Zh., 2009, vol. 35, no. 3, pp. 234–240.

    Google Scholar 

  • Parker, E.N., Sweet’s Mechanism for Merging Magnetic Fields in Conducting Fluids, J. Geophys. Res., 1957, vol. 62, no. 4, pp. 509–520.

    Article  Google Scholar 

  • Podgorny, I.M., Simulation Studies of Space, Fund. Cosm. Phys., 1978, vol. 1, no. 1, pp. 1–72.

    Google Scholar 

  • Podgorny, A.I., On the Possibility of the Solar Flare Energy Accumulation in the Vicinity of the Singular Line, Sol. Phys., 1989a, vol. 123, no. 2, pp. 285–308.

    Article  Google Scholar 

  • Podgorny, A.I., The Magnetohydrodynamical Instability of a Current Sheet Created by Plasma Flow, Plasma Phys. Contr. Fusion, 1989b, vol. 31, no. 8, pp. 1271–1279.

    Article  Google Scholar 

  • Podgorny, A.I., Numerical Simulation of the Current Sheet above Solar Spots, Sol. Phys., 1995, vol. 156, no. 1, pp. 41–64.

    Article  Google Scholar 

  • Podgorny, A.I. and Podgorny, I.M., Solar Flare Model Including the Formation and Destruction of the Current Sheet in the Corona, Sol. Phys., 1992, vol. 139, no. 1, pp. 125–145.

    Article  Google Scholar 

  • Podgorny, A.I. and Podgorny, I.M., Numerical Simulation of a Current Sheet during the Flare of May, 30 1991, Sol. Phys., 1998, vol. 182, no. 1, pp. 159–162.

    Article  Google Scholar 

  • Podgorny, I.M. and Podgorny, A.I., MHD Simulations of Current-Sheet Formation over a Bipolar Active Region, Astron. Reports, 2003, vol. 47, no. 8, pp. 696–702.

    Google Scholar 

  • Podgorny, A.I. and Podgorny, I.M., MHD Simulation of Phenomena in the Solar Corona by Using an Absolutely Implicit Scheme, Computational Mathematics and Mathematical Physics, 2004, vol. 44, no. 10, pp. 1784–1806.

    Google Scholar 

  • Podgorny, A.I. and Podgorny, I.M., Formation of Several Current Sheets Preceding a Series of Flares, Astron. Reports, 2008, vol. 52, no. 8, pp. 666–675.

    Article  Google Scholar 

  • Podgorny, A.I. and Podgorny, I.M., The Method of Search for Possible Solare Flare Positions in the Corona and First Results of Real-Time MHD Simulation of Preflare Situation, Proc. 32 Annual Seminar Physics of Auroral Phenomena, Apatity, 2009, pp. 123–126.

  • Podgorny, A.I. and Podgorny, I.M., Magnetic Flux in an Active Solar Region and Its Correlation with Flares, Astron. Reports, 2011, vol. 55, no. 7, pp. 629–636.

    Article  Google Scholar 

  • Podgorny, A.I. and Syrovatskii, S.I., Formation and Development of a Current Sheet for Various Magnetic Viscosities and Gas Pressures, Soviet J. Plasma Phys., 1981, vol. 7, no. 5, pp. 580–585.

    Google Scholar 

  • Podgorny, A.I., Podgorny, I.M., and Minami, S., Numerical Simulation of Current Sheet Creation above Real Active Region, Adv. Space Res., 2000, vol. 26, no. 3, pp. 535–538.

    Article  Google Scholar 

  • Podgorny, A.I., Podgorny, I.M., and Meshalkina, N.S., Simulation of the Current Sheet in a Flare-Active Region and Comparison to Radio Data, Solar System Res., 2007, vol. 41, no. 4, pp. 322–329.

    Article  Google Scholar 

  • Podgorny, A.I., Podgorny, I.M., and Meshalkina, N.S., The Numerical MHD Simulation of Solar Flare, J. Atmos. Solar-Terr. Phys., 2008, vol. 70, pp. 621–626.

    Article  Google Scholar 

  • Priest, E.R. and Forbes, T.G., The Magnetic Nature of Solar Flares, Astron. Astrophys. Rev., 2002, vol. 10, no. 4, pp. 313–337.

    Article  Google Scholar 

  • Syrovatskii, S.I., Dynamic Dissipation of Energy in the Vicinity of the Magnetic Field Neutral Line, Zh. Eksp. Teor. Fiz., 1966, vol. 50, no. 4, pp. 1133–1147.

    Google Scholar 

  • Torok, T. and Kliem, B., Confined and Ejective Eruption of Kink Unstable Flux Rope, Astrophys. J., 2005, vol. 630, no. 1, pp. L97–100.

    Article  Google Scholar 

  • Uralov, A.M., Rudenko, G.V., Grechnev, V.V., et al., Microwave Source above the Neutral Line as a Source below a Current Sheet, Trudy konf. “Mnogovolnovye issledovaniya Solntsa i sovremennye problemy solnechnoi aktivnosti (Proc. Conference “Multimode Studies of the Sun and Present-Day Problems of Solar Activity”), Nizhnii Arkhyz, 2006, pp. 484–513.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Podgorny.

Additional information

Original Russian Text © A.I. Podgorny, I.M. Podgorny, 2012, published in Geomagnetizm i Aeronomiya, 2012, Vol. 52, No. 2, pp. 163–175.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podgorny, A.I., Podgorny, I.M. Magnetohydrodynamic simulation of a solar flare: 1. Current sheet in the corona. Geomagn. Aeron. 52, 150–161 (2012). https://doi.org/10.1134/S0016793212020107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793212020107

Keywords

Navigation